
A C A D E M I C PA P E R

Analysis of
Content Copyright
Infringement
 in Mobile Application Markets

Analysis of Content Copyright Infringement in
Mobile Application Markets*

Ryan Johnson, Nikolaos Kiourtis, Angelos Stavrou
Kryptowire LLC &

Center for Assurance Research Engineering, George Mason University
{rjohnso8, nkiourti, astavrou}@gmu.edu

Vincent Sritapan
Department of Homeland Security

Science and Technology Directorate
Vincent.Sritapan@hq.dhs.gov

Abstract—As mobile devices increasingly become bigger in
terms of display and reliable in delivering paid entertainment
and video content, we also see a rise in the presence of mobile
applications that attempt to profit by streaming pirated content
to unsuspected end-users. These applications are both paid and
free and in the case of free applications, the source of funding
appears to be advertisements that are displayed while the content
is streamed to the device.

In this paper, we assess the extent of content copyright
infringement for mobile markets that span multiple platforms
(iOS, Android, and Windows Mobile) and cover both official and
unofficial mobile markets located across the world. Using a set
of search keywords that point to titles of paid streaming content,
we discovered 8, 592 Android, 5, 550 iOS, and 3, 910 Windows
mobile applications that matched our search criteria. Out of those
applications, hundreds had links to either locally or remotely
stored pirated content and were not developed, endorsed, or, in
many cases, known to the owners of the copyrighted contents.
We also revealed the network locations of 856, 717 Uniform
Resource Locators (URLs) pointing to back-end servers and
cyber-lockers used to communicate the pirated content to the
mobile application.

I. INTRODUCTION

Over the past few years, we have experienced the advent of
mobile devices capable of receiving and displaying streaming
content. Everyday users are becoming more comfortable using
their phones and tablets to view their favorite shows and
movies. The convenience of the device, as well as the availabil-
ity of the content, has made it much easier to experience video
on a variety of devices. In fact, a recent residential pay-to-view
study by J.D. Power and Associates indicates a clear shift in
the way consumers watch streaming content. As depicted in
Figure 1, phones and tablets each drew more than a 30 percent
share in terms of viewing preference. Similar trends towards
use of mobile devices for video content viewing are supported
by Nielsen [1] and IDG [2].

However, as the mobile devices became the new vehicle for
content dissemination, there has been a rise in the number of
mobile applications that attempt to profit by illicitly delivering
copyrighted content to the end-users. In many cases, these
illicit mobile applications are taking advantage of the current

∗This research was partly supported by the Science and Technology Di-
rectorate of Department of Homeland Security, USA. Any opinions, findings,
and conclusions expressed in this paper are those of the authors and do not
represent the views of the funding sponsor.
978-1-4799-8909-6/15/$31.00 c©2015 IEEE

Fig. 1: J.D. Power and Associates survey for paid video content
delivery mechanisms. The total number exceed 100 percent
because users were allowed to select multiple options for
where they view content.

market gap where providers of paid content have not developed
or made available an application of their own to distribute their
content through mobile devices. In other cases, they attract the
users by offering the mobile application and streaming content
for free in exchange for in-app advertisement and purchases
both not easily monitored by the application market.

In this paper, we are presenting a study of streaming
content copyright infringement for mobile markets that span
multiple platforms and both official and unofficial mobile mar-
kets located across the world. We were able to automatically
and continuously collect application binaries and meta-data
while surveying Google Android, Apple iOS, and Microsoft
Windows mobile markets. Using a set of search keywords that
point to titles of paid streaming content, we discovered 8, 592
Android, 5, 550 iOS, and 3, 910 Windows mobile applications
that matched our search criteria. Out of those applications,

1

hundreds had links to either locally or remotely stored pirated
content and were not developed, endorsed, or, in many cases,
known to the owners of the copyrighted contents. We also
revealed the network locations of 856, 717 Uniform Resource
Locators (URLs) pointing to back-end servers and cyber-
lockers used to communicate the pirated content to the mobile
application.

Our work is the first of its kind to perform a large scale
study across different platforms that covers more than one
hundred mobile application markets for a period of a year:
January to December of 2014. To perform this analysis, we
collected and analyzed data for more than 4 million mobile
applications. Our findings point out that there are many mobile
applications that attempt to confuse users to pay for pirated
content without revealing anything about the source or license
of said content. Although large-scale in terms of platforms and
market locations, the analysis in this paper is by no means
exhaustive because the landscape of the pirated applications
keeps changing. However, the presented results offer examples
of an old form of electronic crime that is making its debut in
a new set of market places.

To achieve this scale of collection and analysis, we built a
framework that collects and processes mobile applications’ bi-
naries and meta-data including the location of back-end servers
that stream pirated content. In our study, we had to address
many challenges in terms of mobile application analysis and
back-end server content analysis. Furthermore, an increasing
number of mobile applications employ different forms of code
obfuscation to thwart static and dynamic analysis in an effort
to mask their operations. Code obfuscation is often coupled
with the use of network and file encryption to prevent analysis
that would reveal the extent of the available pirated content
and the location of all the back-end streaming servers. We
also encountered another form of obfuscation: the use of local,
non-U.S. markets to deploy applications that are shielded from
any attempts to access the mobile application or even content
from U.S. network locations or devices. Finally, to validate our
empirical findings, we manually inspected many of the mobile
applications. In addition, we communicated all of our findings
to the owners of the copyrighted content for take-down or other
legal action.

II. ANALYSIS FRAMEWORK OVERVIEW

Our mobile application analysis employs a wide-range of
static and dynamic analysis techniques to enable the automated
large-scale analysis of mobile applications and the extraction
of back-end server information and streaming content to a
database. This automated analysis process is also comple-
mented with manual inspection to avoid any false positives (i.e.
mobile applications that were flagged as serving copyrighted
material without permission). Figure 2 provides an overview
of the mobile analysis workflow.

In our application analysis, we must contend with a
resource-asymmetric environment (lightweight devices, rela-
tively thin communication with servers that can do more
expensive computation, intermittent connectivity, etc.). Thus,
we split the analysis into two parts: the injection framework
that handles native portions that take on the device through the
injection engine and the dynamic analysis portion that can run

Fig. 2: Overall analysis workflow. We collect mobile packages
and meta-data and we generate an intermediate representation
that is passed to an injection framework that performs dynamic
analysis and binary instrumentation eventually extracting the
back-end URLs.

on x86 architectures by tagging and analyzing the code. For
each platform, we have created a list of mobile Application
Programming Interface (API) method calls that we target due
to their functionality. We interpose on these targeted Android
API calls using an injection framework to obtain, inspect, and
possibly modify the parameter and return values. In addition,
the specific instance of the object which has had its method
called is also examined for non-static methods. The targeted
platform and OS API calls can be hooked before and after one
of the targeted API calls executes which allows us to modify
the input and the output of the hooked mobile API method call.
We can also provide our own implementation for the hooked
API method call instead of allowing the actual implementation
of the mobile API method call to execute.

A. Analysis Framework Implementation

Our mobile application analysis system only requires the
mobile binary package or file of a mobile application along
with the meta-data. After creating the intermediate represen-
tation, the data are passed to the dynamic analyzer and the
injection framework (see Figure 2). The dynamic analyzer
system provides analysis that will feed into the run-time
program instrumentation: when the execution hits the target
code, the system switches to controlled execution mode and

2

would continue untill it reaches a branch. For the encountered
branch, the system follows all paths. The goal of the dynamic
analyzer system is to traverse the effective control graph of
the entire program, including third-party libraries. In addition,
we use dynamic instrumentation to determine concrete values
and program states that can serve as starting points for fault
injection and vulnerability discovery in all code areas. As a
complementary technique, we use concrete values from run-
time execution as shortcuts in the dynamic execution analysis.
The goal of both approaches is to permit a more complete
exploration and automated analysis of the application code.

The main components of the framework are a single
controller module and a plurality of execution modules. The
controller module coordinates the operation of the execution
modules and maintains shared data-structures (e.g., binary tree,
results, etc.). The execution modules operate independently
and concurrently take different execution paths through an
application component. An execution module exists for a
single unique execution path through an application compo-
nent. Upon completion of a path, the controller module re-
initializes the execution module so it can take an new path
through the application component, assuming all paths have
not been taken and that the time limit, if one exists, has
not elapsed. The output from processing each application
component is: (1) a method call graph, (2) control flow graph,
(3) the output of an in-order traversal of the binary tree, (4)
a list of the jump values taken for each execution through the
application component, and (5) a list of relevant behaviors of
the application component.

For Android specifically, we have published the general
structure of the framework previously in [3], [4]. We briefly
describe it here to provide some context on the addition we
performed so we can scale our analysis. We use open-source
software called apktool [5] to generate a human-readable
representation of the Dalvik bytecode for an application.
This format is called smali [6] and each smali file generally
corresponds to a Java class. Nested Java classes will have
their own smali file. The analysis framework reads, parses, and
executes the instructions from the smali files. The framework
contains a Java implementation for executing each of the 226
Dalvik instructions as they are represented in the smali files
[7].

The Dalvik Virtual Machine (VM) uses registers to rep-
resent primitive data types and refer to objects. We created
a custom Java data type to represent the registers in our
framework, so they can be used in the Dalvik instructions. Each
Dalvik instruction has its own implementation that utilizes
our custom class implementing registers and the framework’s
internal data structures. A single line of Java code can translate
into multiple lines of smali code since it is at the bytecode
level. The registers in Dalvik bytecode are designated by a
lowercase letter v or p followed by a decimal number. The
translation of a Java statement for deleting all pictures from a
rooted mobile device into equivalent lines of code in the smali
format. For instance, a mobile application would only need the
android.permission.WRITE EXTERNAL STORAGE permis-
sion to perform such an action.

B. Defending Against Obfuscation

In Android applications, the Java reflection API and dy-
namic class loading can be used to obfuscate the behavior of an
application[8]. Dynamic class loading can enable the insertion
and execution of mobile code to be performed at runtime[9].
At runtime, the application may download some bytecode, dy-
namically load the class, and call its methods reflectively. Static
analysis may fail to identify any malicious activity that could
be contained in the dynamically loaded class. A static analysis
tool would most likely be able to identify the use of the dy-
namic class loading and reflection, but the target of a reflective
call can be difficult or impossible to resolve using static analy-
sis. It is possible to create a Java program that does not explic-
itly call any constructors directly. All objects could be created
via the java.lang.reflect.Constructor.newInstance(java

.lang.Object[]) method call. In addition, all method calls
could be performed using the java.lang.reflect.Method.

invoke(java.lang.Object, java.lang.Object[]) API call.
This would certainly make any manual analysis of the source
code or bytecode much more time consuming.

The injection framework will intercept API method calls
from native code, Java reflection, and dynamic class loading.
These are some methods that may be used to try to obfuscate
the functionality from static analysis and dynamic analysis via
bytecode rewriting. These situations can generally be handled
by bytecode rewriting, but it would likely introduce more
complexity. Reflective method calls can be chained in order to
try to obfuscate the ultimate target of the reflective method call.
This is accomplished by calling java.lang.reflect.Method.

invoke(java.lang.Object, java.lang.Object[]) resulting
in a reflective call to java.lang.reflect.Method.invoke

(java.lang.Object, java.lang.Object[]) that reflectively
calls java.lang.reflect.Method.invoke(java.lang.Object

, java.lang.Object[]) which has the ultimate target of
java.lang.Runtime.exec(java.lang.String[]). The injec-
tion framework will ultimately intercept the call to java.lang.

Runtime.exec(java.lang.String[]) after the reflective calls
are executed.

Dynamic class loading can be used to load dex bytecode
from a jar, apk, or dex file. The injection framework will
intercept API calls from dynamically loaded code. When using
bytecode rewriting, any dex files that are loaded at runtime
must be rewritten before execution of the application continues
so that the logging code is inserted. This can be accomplished
by intercepting certain constructor calls for dynamic class
loading (e.g., dalvik.system.DexClassLoader), so that the dex
bytecode can be instrumented prior to being loaded. This
can be done at runtime, but there is generally a significant
performance penalty from doing so. This only needs to be done
once for each file containing dex bytecode if the optimized dex
file is maintained from the previous time it was loaded.

Native code is an appropriate location to obfuscate API
usage since it is not as easily reverse engineered as Dalvik
bytecode. If the API usage is in native code and it is not
obfuscated, then some API calls may still be able to infer
statically by examining the rodata (i.e., read-only data) seg-
ment when examining the output of using objdump on a native
library written in C. This objdump executable comes with the
Android Native Development Kit (NDK)[10] and the otool[11]
or LLVM toolchain[12] for iOS. In Figure 3 we present source

3

code written in C to use an android.content.Context object
passed in as a parameter to query the text messages on a mobile
device. The android.database.Cursor object will be returned to
the calling method where it can be used to obtain the text
messages from the device.

Fig. 3: De-obfuscating native code using JNIEXPORT and
JNICALL methods and examining the read-only data segment
of the objectdump command (see Figure 4).

Below is a partial output of running objdump -s theli-
brary.so. We have only included a small sample of the rodata
section. The strings that are used as parameters to functions
from native code can consequentially be seen as they show up
in the C source code which is shown above. Examining the
output, one can see the android/net/Uri.parse.(Ljava/lang

/String;)Landroid/net/Uri;, which is the fully qualified
API call. The period in the previous API call represents a
value of 0x00, that is how objdump represents non-printable
characters. The platform API usage in native code could be
obfuscated by deriving some of the strings instead of hard-
coding them in the code.

C. Exercising the User Interface

Our framework is completely automated. We utilize a shell
script and the Mobile Debugging Bridge (ADB) to perform
the necessary file transfer and command execution on the
device. Our framework does require the device to be rooted,
so that we can access files on the internal storage of the
device. For complete automation, we use Monkey [13] to
exercise the (User Interface) UI to get a sampling of an
application’s functionality. The option for complete automation

Contents of section .rodata:
 3884 4e617469 76654c6f 67730044 69642069 NativeLogs.Did i
 ..
 3d24 72657475 726e476d 61696c00 616e6472 returnGmail.andr
 3d34 6f69642f 6e65742f 55726900 70617273 oid/net/Uri.pars
 3d44 6500284c 6a617661 2f6c616e 672f5374 e.(Ljava/lang/St
 3d54 72696e67 3b294c61 6e64726f 69642f6e ring;)Landroid/n
 3d64 65742f55 72693b00 616e6472 6f69642f et/Uri;.android/
 3d74 636f6e74 656e742f 436f6e74 65787400 content/Context.
 3d84 67657443 6f6e7465 6e745265 736f6c76 getContentResolv
 3d94 65720028 294c616e 64726f69 642f636f er.()Landroid/co
 3da4 6e74656e 742f436f 6e74656e 74526573 ntent/ContentRes
 3db4 6f6c7665 723b0061 6e64726f 69642f63 olver;.android/c
 3dc4 6f6e7465 6e742f43 6f6e7465 6e745265 ontent/ContentRe
 3dd4 736f6c76 65720071 75657279 00284c61 solver.query.(La
 3de4 6e64726f 69642f6e 65742f55 72693b5b ndroid/net/Uri;[
 3df4 4c6a6176 612f6c61 6e672f53 7472696e Ljava/lang/Strin
 3e04 673b4c6a 6176612f 6c616e67 2f537472 g;Ljava/lang/Str
 3e14 696e673b 5b4c6a61 76612f6c 616e672f ing;[Ljava/lang/
 3e24 53747269 6e673b4c 6a617661 2f6c616e String;Ljava/lan
 3e34 672f5374 72696e67 3b294c61 6e64726f g/String;)Landro
 3e44 69642f64 61746162 6173652f 43757273 id/database/Curs
 3e54 6f723b00 636f6e74 656e743a 2f2f736d or;.content://sm
 3e64 73005445 4c455048 4f4e595f 53455256 s.TELEPHONY_SERV

Fig. 4: Read-Only data segment (.rodata) output from using the
objdump command in Android. Similar information can be obtained
by the use of the otool or LLVM toolchain for iOS.

allows the analysis to scale. Monkey is not a complete solution
since it randomly injects UI events on the device. There is
also the option for allowing for a human user to control the
analysis process and exercise the application as long as they
desire. This generally enables a more complete view into the
application’s functionality due to an intelligent agent exercising
the application.

D. Exclusion List

We have two modes of targeting specific applications. Gen-
erally, injection frameworks require the device to be rebooted
whenever a change to the code to interact with the injection
framework is made. We use an exclusion list of applications to
ensure that the hooked API method calls in certain applications
are exempt from the logging process. It is possible to isolate a
specific package name by writing it to a file to be checked by
the injection framework or hard-coding it, but this requires that
the device be rebooted whenever the package name changes or
that a certain amount of time passes. To create the exclusion
list, we first create a baseline of package names that are
installed on the device. These are the required applications
and OS processes that should generally be excluded unless
otherwise desired. This should be a static and complete list so
that any installed application (i.e., the target application) has
its API method calls logged since it is not part of the exclusion
list. After analysis of the targeted application has completed,
the application is removed from the device. Then the next
application can be installed and analyzed without rebooting
the device. The exclusion list is implemented as a hash set
of strings that represent the package name of applications and
processes to be excluded. This only needs to be checked once
by each process and then a static Boolean variable is set to
true or false indicating whether that application is excluded
from logging or not. Subsequently, to check if the application
is exempt from logging, it can quickly just check a Boolean
variable to determine it.

4

E. Tracking Data

We have two different methods for capturing the network
and file I/O performed by a mobile application. The first is
by hooking API method calls for I/O streams before or after
they have been executed and capturing what is being written
or read. This can have performance penalties, especially if the
I/O is not buffered. The analysis framework incurs overhead
for writing a log entry. When a log entry is created for
reading or writing a single byte from an I/O stream, the
performance starts to degrade. The analysis framework is
considerably more efficient, when reading and writing streams
are buffered. To minimize the latency that is introduced when
analyzing I/O-heavy applications, we also have a mode to
offload the logging of I/O-related API calls from the injection
framework. For this approach, we simply do not hook the
API calls to read from the I/O streams. We then utilize a
proxy to perform a Man In The Middle (MITM) attack on
the connection, so that we are able to intercept the data sent
over the network and even from SSL/TLS connections. This
offloads the network I/O onto another program that captures
the data. Some applications use certificate pinning to try to
prevent a MITM attack on a connection. We make an attempt
to obviate this by hooking various Java methods (e.g., javax.
net.ssl.TrustManagerFactory) to allow any certificate to be
accepted for the connection instead of the one that is pinned.

We offload file I/O streams by post-processing the
log file after the analysis has concluded. We have a list
of constructors and method calls from the API that are
used for reading and writing files. The parameters to cer-
tain constructors (e.g. java.io.FileInputStream.(java.io.

File)) and method (e.g. android.content.ContextWrapper

.openFileOutput(java.lang.String,int)) are examined to
obtain the full path to files that are read or written by the
application. The list of accessed files is generated as the log
is parsed during post-processing. Thereafter, the files accessed
by the application are pulled off the device. We first copy the
file to the SD card and then pull it from the device using ADB.
We also have a mode to be more aggressive about preserving
files by making files more persistent that they would otherwise
be. We can hook calls such as java.io.File.delete() and provide
our own implementation that runs prior to the actual call and
simply returns true and does not delete the file. The same can
be done for temporary files by creating an actual file, so it
will not be automatically deleted. This can help to preserve
files so that they are copied for later analysis. In addition,
the private directory on internal storage for the application
(e.g., /data/data/com.facebook.katana) is also pulled from the
phone since this is where an application tends to have the
majority of its files. As the analysis is occurring, the APK is
unzipped so that files from the assets folder can be accessed.
An exclusion list of files is checked before a file or directory
is pulled from the phone. For example, we prevent the entire
/mnt/sdcard/DCIM/Camera directory from being pulled even
though it is accessed to have its contents listed. The same
goes for the /mnt/sdcard directory as well as others.

F. Logging Methods

There are multiple methods to transfer the log entries
from within the application to long-term storage. The possible
logging methods are writing to the following locations: logcat,

a named pipe, a file, and a memory-mapped file. The most
efficient method is writing to a memory-mapped file. The
events are written to the file in a sequential order due to
the use of a lock to ensure mutual exclusion when writing
to the file. The use of threads complicates the sequencing of
the API calls. Nonetheless, a relative ordering of API calls can
be examined to give more context to what multiple API calls
may be doing in aggregate. For example, one might observe the
application querying the SMS messages, writing them to a file,
encrypting the file, and sending it over the network. We also
record call the java.lang.System.identityHashCode(java.

lang.Object) on all objects to identify common objects across
various API calls.

Writing the output to logcat is convenient since you do
not have to setup a file or pipe to write to, but writing to the
mobile log is slow and also results in a log file that contains log
entries from all other processes that must be removed. The size
of an entry in logcat has a maximum size of 4KB, so large
entries must be paginated. Writing to logcat also incurs the
overhead of writing binary data to a different representation
such as hexadecimal. In other methods, the binary data from
byte arrays can be written in binary and converted to a String
representation when the log file is post-processed. Writing to
a memory-mapped file is the most effective for writing large
amounts of data to a file. There is a trade-off between the size
of the memory-mapped file and performance.

G. Finding the targeted API call

The smali format [6] is a representation for the disassem-
bled dex bytecode format that the Dalvik Virtual Machine
(VM) uses. In some cases, we are able to identify the exact
line of code in the smali file in which the targeted API method
call occurred. We obtain the smali files using baksmali, which
is used for reverse engineering an applications classes.dex file.
Each smali file generally corresponds to a Java file, although
inner classes will have their own smali file. Each smali file
also contains the package to which the class belongs, and the
location of smali files is hierarchical according to the package
name.

The smali format has .line directive that is used to pop-
ulate the line numbers in stacktraces when an exception is
encountered. Below is a snippet of code from the com/mvl/-
core/MapViewActivity.smali class showing use of the .line
directive.

Listing 1: ”Smali code from MapViewActivity.smali file

.line 343
const/4 v5, 0x1

invoke-virtual {v3, v12, v5}, Landroid/
location/LocationManager;->
getBestProvider(Landroid/location/
Criteria;Z)Ljava/lang/String;

move-result-object v4

.line 344

.local v4, "provider":Ljava/lang/String;
if-eqz v4, :cond_a8

.line 345

5

invoke-virtual {v3, v4}, Landroid/location/
LocationManager;->getLastKnownLocation(
Ljava/lang/String;)Landroid/location/
Location;

move-result-object v16

.line 346

.local v16, "l":Landroid/location/Location;
if-eqz v16, :cond_9e

.line 347
move-object/from16 v0, p0

move-object/from16 v1, v16

invoke-virtual {v0, v1}, Lcom/mvl/core/
MapViewActivity;->onLocationChanged(
Landroid/location/Location;)V

Below is a callstack called from within n mobile appli-
cation. Once a targeted API call is hooked, then the injected
code runs and the call stack can be examined. Usually, the
location of the hooked API method call is in a predictable
location. From the instance of the call (i.e. android.accounts
.AccountManager.getAccountsByType), the callstack can be
searched downward for the first concrete smali file. The
callstack provides the fully qualified method call which enables
us to locate the corresponding smali file. From there, the file is
opened and the possible matches of methods are searched for
the corresponding line number from the line directive. Then
searching commences in all methods within the matching that
have a matching line directive for the targeted Mobile API
call. When the best match is found, the actual line number of
the smali file can be determined.

android.accounts.AccountManager.getAccountsByType
(Native Method)

com.facebook.katana.platform.
FacebookAuthenticationUtils.a(
FacebookAuthenticationUtils.java:128)

com.facebook.katana.authlogin.
AccountManagerAuthComponent.d(
AccountManagerAuthComponent.java:47)

com.facebook.katana.server.handler.
Fb4aAuthHandler.a(Fb4aAuthHandler.java:452)

com.facebook.katana.server.handler.
Fb4aAuthHandler.a(Fb4aAuthHandler.java:285)

com.facebook.katana.server.handler.
Fb4aAuthHandler.a(Fb4aAuthHandler.java:223)

com.facebook.fbservice.service.BlueServiceQueue.e
(BlueServiceQueue.java:360)

com.facebook.fbservice.service.BlueServiceQueue.d
(BlueServiceQueue.java:58)

com.facebook.fbservice.service.BlueServiceQueue$3
.run(BlueServiceQueue.java:280)

java.util.concurrent.Executors$RunnableAdapter.
call(Executors.java:422)

java.util.concurrent.FutureTask.run(FutureTask.
java:237)

com.facebook.common.executors.
ListenableScheduledFutureImpl.run(
ListenableScheduledFutureImpl.java:58)

android.os.Handler.handleCallback(Handler.java
:733)

android.os.Handler.dispatchMessage(Handler.java
:95)

android.os.Looper.loop(Looper.java:136)
android.os.HandlerThread.run(HandlerThread.java

:61)

The example stacktrace, shown above, is from the
Facebook mobile application which has a package name
of com.facebook.katana. The method being hooked is
the android.accounts.AccountManager.getAccountsByType

(java.lang.String) method. This method is called from
the line 128 of the a method of the com.facebook.katana.

platform.FacebookAuthenticationUtils class. The line 128
corresponds to the line number in the Java source code. The
method calls do not have parameter values, so one must be
aware of that and try to make the best match possible in the
smali file.

H. Limitations of the Analysis Process

One needs to be careful when using an injection frame-
work. It is easy to create an infinite loop of hooking a call
from the application and then using a call that is to be
hooked in your logging code. This can create a boot loop
or a java.lang.StackOverflowError exception. The code
used in conjunction for the injection framework needs to be
thoughtfully constructed and tested.

The application being analyzed may be able to detect
that is being executed under supervision or that an injection
framework is active on the device. Some ways it could try to
tell is by checking for all installed applications on the device
and looking for known package names that belong to injection
frameworks. It may be possible to examine the callstack of an
executing thread and look for the presence of certain injection
methods. There should be various ways to detect them.

The injection framework only allows direct methods to be
hooked. This means that the method to be hooked has to reside
in the class specifically being hooked and not a virtual method
where the actual implementation resides in a superclass. In
addition, interfaces cannot be hooked since it needs to hook
the concrete implementation that fulfills the interface.

(uncategorized), 18,076
Action, 11,169

Adventure, 5,269

Arcade, 34,162

Board, 2,689

Books & Reference, 60,087
Business, 58,427

Card, 6,949
Casino, 3,177

Casual, 40,676

Comics, 4,856

Communication,
23,230

Education, 87,464

Educational, 6,829

Entertainment, 96,578

Family, 4,531

Finance, 23,267

Health & Fitness, 30,998

Libraries & Demo, 3,408

Lifestyle, 75,929

Media & Video, 18,985
Medical, 14,392

Music, 907
Music & Audio, 42,484

News & Magazines, 32,745

None, 21

Personalization, 79,260

Photography,
14,754

Productivity,
29,891

Puzzle, 52,435

Racing,
5,780

Role Playing,
2,014

Shopping, 17,027

Simulation, 3,429

Social, 22,401
Sports,
37,086

Strategy, 2,907

Tools, 77,232

Transportation, 14,647
Travel & Local,

50,388

Trivia, 4,238
Weather,

4,975

Word, 2,322

Fig. 5: A chart of mobile application in Android Google Play
market for each of the categories that are present in the market.

III. ANALYSIS RESULTS

In this section, we discuss our empirical results from using
our analysis framework to expose mobile applications that

6

Books, 27,054 Business, 68,548
Catalogs, 6,267

Education, 101,160

Entertainment, 76,393

Finance,
24,896

Food & Drink,
23,577 Games, 240,171

Health & Fitness, 29,830

Lifestyle, 77,683

Medical, 23,070

Music, 36,712

Navigation,
13,686

News,
23,910

Photo &
Video,
30,053

Productivity,
30,513

Reference,
26,901 Social

Networking,
20,126

Sports, 33,159
Travel, 54,045

uncategorized, 128

Utilities,
55,056

Fig. 6: Apple iTunes store mobile applications for each of the
categories that are present in the market.

Total Apps Discovered Google Play Apple App Store Windows Phone
U.S. & Foreign Stores 8,592 5,550 3,910
Brazil only 91 48 7
China only (Chinese Simplified) 41 61 20
China only (Chinese Traditional) 74 45 12
India only 49 0 0
Italy only 83 62 23
Russia only 125 63 13
South Korea only 32 37 2

Total Apps avalable in Foreign Stores only
 (All Countries except U.S.) 495 316 77

Fig. 7: Infringing Mobile Apps across all stores and market-
places.

were streaming copyrighted content without the permission
of the rightful owner and with the intent to make profit
either by selling the mobile application itself or by displaying
advertisements to the end-user while the content on the mobile
device when the application was in use.

Overall, we surveyed more than one hundred official and
unofficial markets including Apple’s iTunes, Google Play,
Windows Mobile, and Amazon Appstore, a list with a repre-
sentative set for the 3rd-party markets we surveyed is included
in the Appendix A.

We were also able to collect data from all the official
market places. Figure 5 shows a list of mobile applications
present as of December 2014 in the Android app store where
as Figure 6 represents the list of iOS applications in the Apple
iTunes store.

Our main result is shown in Figure 7. In this table, we
discovered 8, 592 Android, 5, 550 iOS, and 3, 910 Windows
mobile applications that matched our search criteria. Out
of those applications, hundreds had links to either locally
or remotely stored pirated content and were not developed,
endorsed, or, in many cases, known to the owners of the
copyrighted contents. Notice, that depending on where the
market is being accessed in terms network location, the local
markets produced different results in our search for mobile
applications. For instance, in Google Play Russia, we were able
to discover 125 more applications that were serving infringing
content to end-users.

The top pirated movies sorted by the number of mobile
applications that were streaming their content along with their

copyright owner and the total number of applications and
URLs that were carrying its content is depicted in Figure 8.
Notice that many of the movies are older than a year and that
there are many back-end URLs that support their streaming.
This is due to the fact that mobile applications attempt to load-
balance their streaming content and identify the closest server
optimizing the latency and user load. In many cases, some of
the back-end URLs serve as a backup in case one or more of
them become unreachable or taken-down because of copyright
infringement.

Title Year Copyright/Material/Owner URLs Apps
Iron%Man%3% 2013 Walt%Disney%Studios%Motion%Pictures 588 84
Despicable%Me%2% 2013 Universal%City%Studios%LLC 407 78
Escape%Plan% 2013 Summit%Entertainment 559 75
White%House%Down% 2013 Sony%Pictures%Entertainment%Inc. 483 75
Turbo% 2013 Twentieth%Century%Fox%Film%Corporation 430 75
World%War%Z% 2013 Paramount%Pictures%Corporation 447 73
Life%of%Pi 2012 Twentieth%Century%Fox%Film%Corporation 320 73
Warm%Bodies% 2013 Summit%Entertainment 312 73
Gravity% 2013 Warner%Bros.%Entertainment%Inc. 442 72
Red%2% 2013 Summit%Entertainment 385 72
RoboCop 2014 Sony%Pictures%Entertainment%Inc. 371 72
Parker% 2013 SND 398 71
Elysium% 2013 Sony%Pictures%Entertainment%Inc. 428 70
The%Wolverine% 2013 Twentieth%Century%Fox%Film%Corporation 585 69
Captain%Phillips% 2013 Sony%Pictures%Entertainment%Inc. 522 69
The%Host% 2013 Chockstone%Pictures 503 69
The%Hunger%Games 2012 Lions%Gate%Entertainment 461 69
The%Conjuring% 2013 Warner%Bros.%Entertainment%Inc. 400 69
Frozen% 2013 Walt%Disney%Studios%Motion%Pictures 394 69
The%Croods% 2013 DreamWorks%Animation 262 69
Ride%Along 2014 Universal%City%Studios%LLC 492 67
Epic% 2013 Twentieth%Century%Fox%Film%Corporation 473 67
Olympus%Has%Fallen% 2013 Nu%image%Films%&%Millenium%Films 339 67
2%Guns% 2013 Universal%City%Studios%LLC 331 67
Grown%Ups%2% 2013 Sony%Pictures%Entertainment%Inc. 472 66
The%Lone%Ranger% 2013 Walt%Disney%Studios%Motion%Pictures 402 66
Last%Vegas 2013 Universal%City%Studios%LLC 298 65
The%Expendables%2 2012 Nu%image%Films%&%Millenium%Films 284 65
Carrie% 2013 Sony%Pictures%Entertainment%Inc. 493 64
Pacific%Rim% 2013 Warner%Bros.%Entertainment%Inc. 462 64

Fig. 8: Top 30 pirated content ranked by the number of mobile
applications that were streaming the content.

Another interesting measurement is the geo-location of the
most popular back-end server that provide pirated streaming
content to the mobile applications throughout the globe. In
Figure 9, we have plotted the locations of the most notable
ones on a map. A list with the top 40 domains and servers
and their country of origin is shown in Figure 10.

IV. RELATED WORK

The forced path execution techniques for Android appli-
cations have been discussed in our previous work [3], [4].
However, neither the workflow nor the obfuscation avoidance
techniques have been presented for Android. The workflow is
completely new and it covers both iOS and Windows Mobile
platforms, which was not the case in any of our previous work.

Forced path execution for binaries have been extensively
discussed in [14], [15], [16] and some of the obfuscation
techniques for Android malware have appeared in [17], [18],

7

Fig. 9: Map with the geo-location of the back-end streaming servers for pirated content.

Host%Name urls country_name continent_code
www.youwatch.org 695768 Switzerland EU

www.enlacespepito.com 484167 Spain EU

vk.com 290318 RussianEFederation EU

www.exashare.com 227648 Netherlands EU

31.7.60.50 122186 Switzerland EU

www.youtube.com 108180 UnitedEStates NA

www.putlocker.com 85179 UnitedEStates NA

www.sockshare.com 66263 CostaERica NA

api.video.mail.ru 65483 RussianEFederation EU

filenuke.com 65208 UnitedEStates NA

daclips.com 59940 Moldova,ERepublicEof EU

movpod.net 59554 Moldova,ERepublicEof EU

plist.vnOhd.com 55554 Vietnam AS

allmyvideos.net 49784 Netherlands EU

gorillavid.in 49775 Moldova,ERepublicEof EU

gorillavid.com 48001 Moldova,ERepublicEof EU

redirector.googlevideo.com 35905 UnitedEStates NA

adf.ly 34751 UnitedEStates NA

sharesix.com 34051 UnitedEStates NA

played.to 29098 UnitedEStates NA

daclips.in 28019 Moldova,ERepublicEof EU

movpod.in 27457 Moldova,ERepublicEof EU

tv.zing.vn 27231 Vietnam AS

www.movshare.net 26630 Switzerland EU

www.vidhog.com 23037 UnitedEKingdom EU

www.nowvideo.eu 23004 Netherlands EU

www.videoweed.es 21820 Netherlands EU

thefile.me 21483 UnitedEStates NA

www.novamov.com 21326 Netherlands EU

www.uploadc.com 20457 Germany EU

www.zalaa.com 19836 Germany EU

sharerepo.com 19644 Netherlands EU

mightyupload.com 19449 UnitedEStates NA

www.divxstage.eu 19009 Netherlands EU

www.firedrive.com 17824 CostaERica NA

stagevu.com 17565 Netherlands EU

nosvideo.com 17463 Germany EU

www.tudou.com 16784 China AS

bestreams.net 14990 Ukraine EU

videomega.tv 13498 UnitedEStates NA

Fig. 10: Top 40 domains that serve pirated streaming content
to mobile applications and their country of origin.

[19]. However, we are not aware of any large-scale study that
attempted to analyze mobile applications in terms of copyright
infringement.

Another related form of execution, called concolic test-
ing [20], [21], [22] was used to facilitate software and unit
testing in cases where code coverage was important and
symbolic execution was not possible. Our work is inspired by
those techniques but we do not apply them directly because we
have to analyze code that is mixed: Java bytecode and native
code for Android, objective c and HTML for iOS and Visual
C++ and Visual C# for Windows Mobile.

V. CONCLUSION

We have presented a study of infringing content for mobile
applications using an automated framework for analysis of mo-
bile applications. The process of collecting and analyzing mo-
bile applications has many challenges including the attempts
to obfuscate the application code and encrypt the network
traffic. We present our approach that employs dynamic analysis
and code instrumentation to bypass obfuscation techniques and
allow the analysis of apps at scale.

Our empirical results show that the copyright infringement
of mobile apps is non-negligible with cyber-lockers that span
many domains and countries around the globe. In addition,
there is clear evidence that this is not a platform-specific
problem but rather a systemic issue that requires serious
consideration as the number of mobile users that consume
copyrighted content increases. We believe that our study is
one of the first to shed light on the extent of the problem and
offer a global view across all major mobile platforms.

REFERENCES

[1] Nielsen, “Mobile Consumer Report,” 2013.
[2] IDG Global, “Mobile Survey.”
[3] R. Johnson, Z. Wang, A. Stavrou, and J. Voas, “Exposing software

security and availability risks for commercial mobile devices,” in
Reliability and Maintainability Symposium (RAMS), 2013 Proceedings-
Annual. IEEE, 2013, pp. 1–7.

8

[4] R. Johnson and A. Stavrou, “Forced-path execution for android ap-
plications on x86 platforms,” in Software Security and Reliability-
Companion (SERE-C), 2013 IEEE 7th International Conference on.
IEEE, 2013, pp. 188–197.

[5] Google, “Android apktool: A tool for reengineering Android apk files,”
http://code.google.com/p/android-apktool/.

[6] ——, “Smali - an assembler/disassembler for Android’s dex format.”
http://code.google.com/p/smali/.

[7] ——, “Dalvik bytecode,” https://source.android.com/devices/tech/dalvik/dalvik-
bytecode.html.

[8] M. Hirzel, A. Diwan, and M. Hind, “Pointer analysis in the presence
of dynamic class loading,” in In ECOOP, 2004, pp. 96–122.

[9] H. Kaiya and K. Kaijiri, “Specifying runtime environments and func-
tionalities of downloadable components under the sandbox model,”
in Principles of Software Evolution, 2000. Proceedings. International
Symposium on, 2000, pp. 138–142.

[10] Google, “Android Native Development Kit (NDK),”
https://developer.android.com/tools/sdk/ndk/index.html.

[11] “Otool-NG bibtex — endnote — acm ref @inproceedingsLat-
tner:2004:LCF:977395.977673, author = Lattner, Chris and Adve,
Vikram, title = LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation, booktitle = Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed
and Runtime Optimization, series = CGO ’04, year = 2004, isbn =
0-7695-2102-9, location = Palo Alto, California, pages = 75–, url
= http://dl.acm.org/citation.cfm?id=977395.977673, acmid = 977673,
publisher = IEEE Computer Society, address = Washington, DC, USA,
,” https://github.com/gdbinit/otool-ng.

[12] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed
and Runtime Optimization, ser. CGO ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 75–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=977395.977673

[13] Android developers. ui application exerciser monkey. [Online].
Available: http://developer.android.com/guide/developing/tools/monkey.
html

[14] Y. Nadji, M. Antonakakis, R. Perdisci, and W. Lee, “Understanding the
prevalence and use of alternative plans in malware with network games,”
in Proceedings of the 27th Annual Computer Security Applications
Conference. ACM, 2011, pp. 1–10.

[15] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, “X-force: Force-
executing binary programs for security applications,” in Proceedings of
the 2014 USENIX Security Symposium, San Diego, CA (August 2014),
2014.

[16] M. Graziano, C. Leita, and D. Balzarotti, “Towards network contain-
ment in malware analysis systems,” in Proceedings of the 28th Annual
Computer Security Applications Conference. ACM, 2012, pp. 339–348.

[17] V. Rastogi, Y. Chen, and X. Jiang, “Droidchameleon: evaluating android
anti-malware against transformation attacks,” in Proceedings of the 8th
ACM SIGSAC symposium on Information, computer and communica-
tions security. ACM, 2013, pp. 329–334.

[18] M. Linares-Vásquez, A. Holtzhauer, C. Bernal-Cárdenas, and D. Poshy-
vanyk, “Revisiting android reuse studies in the context of code obfusca-
tion and library usages,” in Proceedings of the 11th Working Conference
on Mining Software Repositories. ACM, 2014, pp. 242–251.

[19] M. Protsenko and T. Muller, “Pandora applies non-deterministic obfus-
cation randomly to android,” in Malicious and Unwanted Software:”
The Americas”(MALWARE), 2013 8th International Conference on.
IEEE, 2013, pp. 59–67.

[20] R. Majumdar and K. Sen, “Hybrid concolic testing,” in Software Engi-
neering, 2007. ICSE 2007. 29th International Conference on. IEEE,
2007, pp. 416–426.

[21] K. Sen and G. Agha, “Cute and jcute: Concolic unit testing and explicit
path model-checking tools,” in Computer Aided Verification. Springer,
2006, pp. 419–423.

[22] P. Garg, F. Ivancic, G. Balakrishnan, N. Maeda, and A. Gupta,
“Feedback-directed unit test generation for c/c++ using concolic execu-
tion,” in Proceedings of the 2013 International Conference on Software
Engineering. IEEE Press, 2013, pp. 132–141.

APPENDIX
TRACKED THIRD-PARTY MARKETS

9

Tracked!Third!Party!Markets:!!
1Mobile!!
91mobiles!!
92Apk,,
Alterna8veTo!
Amazon!!!
Andapponline!!
Android!Downloadz!!
Android!Freeware!!
Android!games!
room!!
Androidblip!!
AndroidPit,,
AndroidTapp!!
AndroLib,,
Anzhi,Market,,
ApkSuite!!
AppBrain!!
AppCake!!
AppChina,,
AppCity,,
Appitalism!!
Appolicious!!
AppsEgg!!
!!
!

AppsFire!!
AppsLib,
AppsZoom!!
AppTown!!
Appzil!!
Aptoide!!
AT&T!
Baidu,App,Store,,
Barnes!&!Noble!
Blackmart!Alpha!!
Brophone!!
Brotherso=!!
Camangi!!
Cisco!Market!!
CNET!!
CoolApk,,
Cydia,
D.cn,Games,Center,
EOE!Market!!
ESDN!!
FDDroid,,
Fetch!
GetJar,,
YAAM,
,
!
!
!

Gfan!
Good!Ereader!!
Hami!!
Handango,,
Handmark!!
Handster!!
HiApk,,
Hyper!Market!
iMedicalApps,,
Insyde,Market,,
Lenovo!App!Store!!
LG!World!!
MerkaMarket!!
Mikandi!!
Millet!App!Store!!
Mob.org!!
Mobango!
Mobile9!!
mobiles24!!
Mobilism!!
Moborobo!
MplayIt!!
NDDuo,,
Naver!NStore!
!

AppAddict,
DTAThemes!
Insanelyi!
BiteYourApple!
Sinful!iPhone!
iF0rce,
Ryan!Petrich!
FilippoBiga!
Pushfix!
HackYouriPhone!
HASHBANG!Produc8ons!
XSellize!
iSpazio!
ZodTTD!
ModMyi!
BigBoss,
Popcorn!Time!
iPhoneCake,
Saurik,Cydia,Repo,
Karen!Pineapple!Repo!
XBMC!iOS!Repo!
Wei!Feng!Public!Source!
25PP!
3K!Assistant!

10

