
A C A D E M I C PA P E R

FirmScope
Automatic Uncovering
of Privilege-Escalation
Vulnerabilities in Pre-Installed
Apps in Android Firmware

This paper is included in the Proceedings of the
29th USENIX Security Symposium.

August 12–14, 2020
978-1-939133-17-5

Open access to the Proceedings of the
29th USENIX Security Symposium

is sponsored by USENIX.

FirmScope: Automatic Uncovering of
Privilege-Escalation Vulnerabilities in

Pre-Installed Apps in Android Firmware
Mohamed Elsabagh, Ryan Johnson, and Angelos Stavrou, Kryptowire;

Chaoshun Zuo, Qingchuan Zhao, and Zhiqiang Lin, The Ohio State University

https://www.usenix.org/conference/usenixsecurity20/presentation/elsabagh

FIRMSCOPE: Automatic Uncovering of Privilege-Escalation Vulnerabilities in
Pre-Installed Apps in Android Firmware

Mohamed Elsabagh
Kryptowire

melsabagh@kryptowire.com

Ryan Johnson
Kryptowire

rjohnson@kryptowire.com

Angelos Stavrou
Kryptowire

astavrou@kryptowire.com

Chaoshun Zuo
The Ohio State University

zuo.118@osu.edu

Qingchuan Zhao
The Ohio State University

zhao.2708@osu.edu

Zhiqiang Lin
The Ohio State University

lin.3021@osu.edu

Abstract
Android devices ship with pre-installed privileged apps in

their firmware — some of which are essential system compo-
nents, others deliver a unique user experience — that users
cannot disable. These pre-installed apps are assumed to be
secure as they are handpicked or developed by the device ven-
dors themselves rather than third parties. Unfortunately, we
have identified an alarming number of Android firmware that
contain privilege-escalation vulnerabilities in pre-installed
apps, allowing attackers to perform unauthorized actions such
as executing arbitrary commands, recording the device audio
and screen, and accessing personal data to name a few. To
uncover these vulnerabilities, we built FIRMSCOPE, a novel
static analysis system that analyzes Android firmware to ex-
pose unwanted functionality in pre-installed apps using an
efficient and practical context-sensitive, flow-sensitive, field-
sensitive, and partially object-sensitive taint analysis. Our
experimental results demonstrate that FIRMSCOPE signifi-
cantly outperforms the state-of-the-art Android taint analysis
solutions both in terms of detection power and runtime perfor-
mance. We used FIRMSCOPE to scan 331,342 pre-installed
apps in 2,017 Android firmware images from v4.0 to v9.0
from more than 100 Android vendors. Among them, FIRM-
SCOPE uncovered 850 unique privilege-escalation vulnerabil-
ities, many of which are exploitable and 0-day.

1 Introduction

Ever since its acquisition by Google in 2005, we have wit-
nessed the rapid development and prodigious adoption of the
Android platform. Today, it has become the dominant OS in
the mobile domain with a market share of 76% [1] as well as
the most widely used OS of any platform, surpassing even
Windows [2]. Some key factors for the success of Android are
its open ecosystem, assortment of available models, inclusion
of Google’s suite of apps, and a multitude of app marketplaces
hosting millions of Android apps. Currently, anyone (includ-
ing hardware vendors, device manufacturers, cellular service

providers, social media companies, and mobile app develop-
ers) can develop and introduce apps into an Android mobile
device, with the difference that apps introduced by app devel-
opers are typically downloaded from app stores by the users
whereas the rest are directly introduced in the supply-chain
and pre-installed in device firmware by manufacturers.

There are many reasons to introduce pre-installed apps
in Android firmware. First, pre-installed apps often provide
unique features and special services that distinguish a vendor
or device from its competitors. Second, pre-installed apps
come with pre-approved sensitive permissions and capabili-
ties that are unavailable to user-level apps downloaded from
app stores and often do not require user approval or consent
to operate. In most cases, pre-installed apps typically run as
the highly-privileged system user and cannot be uninstalled
by the end user, even if a pre-installed app is found to be
vulnerable, malicious, or simply unwanted. When users face
these threats, their options are limited: wait for an update that
hopefully fixes the vulnerable pre-installed app; or remove
the app by rooting the device, potentially voiding its warranty
and compromising its security.

Although intuitive from a marketing and ease of distribu-
tion perspectives, software distributed via firmware can ex-
pose end users to severe security risks unbeknownst to them
and in many cases even to device manufacturers. This was
partly shown in the past where Android vendor customization
introduced vulnerabilities [3–6]. Of course, vulnerabilities
can have different causes: software that is not tested, poorly
tested, or purposefully designed to be easily exploitable or
malicious. Even if the enterprise or an end user is diligent and
follows a stringent security guidance, they may still be at risk
of malicious or insecure apps that they did not install but were
present on the device firmware when it was first delivered.

Therefore, there is a pressing need to address the supply-
chain threats that stem from vulnerable or malicious software
distributed through firmware images on mobile devices. To
this end, this paper presents FIRMSCOPE, a scalable, compre-
hensive, and automated static taint analysis system to identify
the firmware-borne vulnerabilities residing in pre-installed

USENIX Association 29th USENIX Security Symposium 2379

apps, both malicious and (un)intentionally insecure, present
in Android firmware. Not all vulnerabilities are of our inter-
est, and instead we particularly focus on detecting privilege-
escalation vulnerabilities in pre-installed apps where the sensi-
tive behavior is externally invokable (e.g., by a third-party app
or a remote party). For instance, an unprivileged third-party
app executing a command as the system user by exploiting
an insecure interface of a pre-installed app.

While static taint analysis of mobile apps has been well
studied (e.g., [7–11]) there are still enormous challenges (due
to the complex OOP language constructs and also sophisti-
cated control and data flows in Android APIs and callbacks)
to the precision and scalability of the analysis when applied
to real-world apps without source code access. For instance,
how to precisely and efficiently track data flows through dif-
ferent objects, class fields, the Android framework APIs, and
runtime callbacks. We have thus developed several novel
techniques in FIRMSCOPE to handle these challenges in an
efficient and precise manner suitable for large scale real-world
app analysis. FIRMSCOPE achieves unprecedented detection
power and performance. It incurs only 7 FPs and 11 FNs on
the latest DroidBench 2.0 [12], and is 2X to 24X faster than
FlowDroid [9], Amandroid [10], and DroidSafe [11].

We have evaluated FIRMSCOPE on 331,342 pre-installed
apps from 2,017 Android firmware images from v4.0 to v9.0
covering more than 100 Android vendors, including the top
20 Android vendors worldwide. FIRMSCOPE has uncovered a
total of 850 unique privilege-escalation vulnerabilities (3,483
total) in 1,547 firmware (77% of the analyzed images). These
vulnerabilities included code and command injection; obtain-
ing the modem logs and Logcat logs; wiping all user data
from a device (i.e., factory reset); accessing, sending, and
manipulating calls and text messages; (un)installing arbitrary
apps; recording the device screen and microphone; among
others. Coordinated disclosure of our findings is still ongoing.
Thus far, we have disclosed 370 vulnerabilities in Android 7
to 9 to impacted vendors and received 147 CVEs.
In short, we make the following contributions:

• Novel System. We present FIRMSCOPE, a scalable, com-
prehensive, and automated system to identify privilege-
escalation vulnerabilities residing in pre-installed apps in
Android firmware at a large scale.

• Efficient Techniques. We significantly improve the scala-
bility and accuracy of existing static taint analysis with an
efficient on-demand custom flow-, context-, field-sensitive,
and partially object-sensitive analysis.

• Large-Scale Evaluation. We evaluate FIRMSCOPE using
hundreds of thousands of pre-installed apps from over two
thousand firmware, in which it identified more than three
thousand privilege-escalation vulnerabilities.

2 Background and Threat Model

Background. Android apps are composed of app compo-
nents, which are functional code units that developers use to
build an app. App components are implemented by extending
certain framework classes containing a platform-managed
lifecycle. App components serve as app entry points and
can be started by the app itself, the system, and sometimes
external apps, effectively permitting the sharing of code and
possibly data. Components include Activities (GUI screens),
Services, Broadcast Receivers, and Content Providers. Each
Android app contains an AndroidManifest.xml file listing
all the app’s components and various configuration data.

Android apps are sandboxed by the kernel where each app
runs in its own isolated process and gets an isolated private
storage space on the filesystem. By default, apps are not
allowed to execute code in each other’s context or access each
other’s data. There is no system-wide enclave for sensitive
data. Instead, each app stores its own private information in
its sandboxed storage space.

A pre-installed app is any app that comes pre-loaded with
a firmware image. These apps can be non-essential apps that
the device vendor decided to ship with the firmware (e.g.,
bloatware) or internal firmware apps implementing critical
system components necessary for the proper functionality
of the device (e.g., managing device settings, apps installa-
tion, and carrier negotiation). Pre-installed firmware apps are
typically installed under /system/app and /system/priv-
app on a read-only device partition whereas apps downloaded
from app stores are installed under /data.

Pre-installed apps are privileged by design; some can run
in the background as the privileged system user and cannot
be uninstalled by the end-user. Android has four permission
protection levels: Normal (lowest), Dangerous, Privileged,
and Signature (highest).1 Pre-installed apps can access highly
sensitive device functionalities protected by Privileged- and
Signature-level permissions that are not accessible by third-
party apps downloaded from app stores. Due to the highly-
privileged status of these apps, (un)intentional design or pro-
gramming mistakes can facilitate confused deputy attacks,
allowing unprivileged third-party apps, and perhaps remote
entities, to abuse the capabilities of pre-installed apps and
cross security boundaries set by the Android OS.

Threat Model. An Android firmware archive typically con-
tains several modules, including a bootloader, the Android
Linux kernel, the Android runtime framework, an embedded
radio firmware, and pre-installed apps. We exclusively focus
on discovering vulnerabilities in pre-installed firmware apps.
Our objective is to use static analysis to uncover high-impact
weaknesses (often posing as backdoors) in pre-installed apps

1There are additional permission levels reserved for the OS or require
explicit granting over USB (e.g., Development, Instant, Installer, Verifier,
Appop, etc.) that can be found in [13].

2380 29th USENIX Security Symposium USENIX Association

	User	App	(/data/app/attack.apk)

	System	App	(/system/priv-app/update.apk)

public	class	a	extends	e	{

				public	void	onReceive(Context	arg1,
																										Intent	arg2)	{
								...
								v0	=	arg2.getStringExtra("cmd");
								int	v1	=	this.a(v0);

								...
				}
}

public	class	k	extends	BroadcastReceiver	{

				private	j	h	=	new	j();

				public	k(Context	arg1,	String	arg2)	{
								this.h.i	=	arg2;
								arg1.registerReceiver(this);
				}

				public	void	onReceive(Context	arg1,	Intent	arg2)	{
								int	v0	=	arg2.getIntExtra(
																				BatteryManager.EXTRA_PLUGGED,	-1);
								if	(v0	==	BatteryManager.BATTERY_PLUGGED_AC)
												run();
				}

				public	void	run()	{
								Log.d(this.h.x);
								Process	v0	=	Runtime.getRuntime().exec(this.h.i);
								...
				}
}

public	abstract	class	e	
							extends	BroadcastReceiver	{

				public	int	a(String	arg1)	{
								new	k((Context)this,	arg1);
								...
				}
}

void	exploit()	{
				...
				intent.putExtra(
								"cmd",
								"sh	/path/to/payload.sh"
);

				sendBroadcast(intent);
				...		
}

In-APP	Control	Flow

Data	Flow

Android	Framwork

Android	Apps

Android	System

Cross-APP	Control	Flow	

1

2

7

6

5

4

3

Figure 1: A running example simplified from a real-world pre-installed system app exhibiting a command injection vulnerability.

stemming from improper access control to privileged capa-
bilities. These weaknesses result in privilege-escalation vul-
nerabilities that can be leveraged by local or remote parties
to escalate privileges, bypass security boundaries set by the
Android OS, and execute sensitive functionalities. For exam-
ple, executing an attacker-controlled command in the context
of another app’s process allows the attacker to — at least —
access that app’s private code and data, bypassing sandboxing.

In particular, we focus on functionalities exported by
firmware apps that can be invoked without user’s awareness
(i.e., minimal use of the app’s GUI components, if any). In
other words, we assume that functionalities invoked solely via
an app’s GUI are trusted. For instance, if the user launches a
pre-installed factory-reset app (e.g., the Settings app) and re-
quests to factory reset the device then that behavior should not
be flagged as a vulnerability. The GUI is a legitimate interface
and the user (the human using the phone) is always trusted.
Therefore, anything visible to the user in a pre-installed app
is considered trusted.

Again, FIRMSCOPE exclusively focuses on identify-
ing privilege-escalation vulnerabilities in pre-installed apps.
While it can also detect privacy leakage (e.g., personally
identifiable information) in pre-installed apps, we exclude
it from our scope since it is well-studied in prior research
[9–11, 14–16]. In addition, analyzing the vulnerabilities in
the kernel and the Android runtime framework is also out of
scope. Interested readers can consult related works in this
area, e.g., [15] for insecure memory management vulnerabil-
ity discovery inside the Android kernel, PERISCOPE [17] and
DR. CHECKER [18] for kernel driver vulnerability discov-
ery, and [6, 19] for insufficient input validation in interfaces
exposed by the Android runtime and its components.

3 Challenges and Key Insights

Running Example. We start by giving a running example in
Figure 1 to motivate and illustrate some of the key challenges
addressed by this work. This example is simplified from a
real-world pre-installed system app that can be exploited by
unprivileged third-party apps to execute arbitrary commands
as the privileged system user. We omitted non-essential
details for clarity. At a high level, this system app exposes
an insecure interface, namely class a, which can receive an
Intent sent from any app co-located on the device (step Ê).
Once the Intent arrives at the onReceive method of class
a (step Ë), an attacker-controlled string is extracted from the
Intent and passed to method a of the parent class e (step Ì).
Method a then creates a new object of type k and passes the
incoming string to the constructor of k (step Í). Inside the
constructor of k, the string is saved to a field h.i then the
class instance registers itself as a receiver for all battery events
(step Î). When a battery event is dispatched by the system,
the onReceive callback in class k is invoked (step Ï), inside
which the run method is called if the battery status indicates
that the phone is plugged to an AC charger (step Ð). Inside
method run, the attacker-controlled string in the h.i field
is finally passed as the first argument to the Runtime.exec
call which, in turn, executes the contents of the string as a
command with the vulnerable system app’s own privileges,
i.e., as the highly-privileged system user.

Challenges. While various prior works have used static taint
analysis to identify vulnerabilities in Android apps, e.g., Flow-
Droid [9], Amandroid [10], and DroidSafe [11], there are still
enormous challenges that hinder their practicality, especially
scaling to large apps and striking a good balance between
detection power and runtime performance. At a high level,
these challenges mainly stem from (i) the semantics of Java

USENIX Association 29th USENIX Security Symposium 2381

(e.g., how to resolve the points-to relations among objects to
reason about data dependencies), and (ii) the semantics of
the Android framework and runtime environment (e.g., how
to handle data- and control-flow discontinuities due to calls
to the Android APIs and callbacks from the runtime envi-
ronment to an app). Below we elaborate on the important
challenges and how we address them. Our solutions consist
of several techniques that allow us to precisely and efficiently
track data flows in real-world apps.

C1: Tracking Flows Through Class Fields. Android apps
use rich OOP constructs that involve dynamic composite
types. It is essential for an analysis to be able to track flows to
class fields, otherwise sensitive flows may go undetected. In
the example in Figure 1 the attacker-controlled command
flows through the nested field this.h.i (steps Í to Ð)
which would flow undetected unless the analysis properly
and precisely handles data flowing through fields. In addition,
it is important that information tracked per field can differ-
entiate between tainted and untainted fields belonging to the
same class type or instance. For example, the field this.h.i
in our running example should be tainted but not this.h.x.

Prior works used context-insensitive CFGs and injected
context information during taint tracking to track flows
through fields [9], did not model nested fields [10], or used
flow-insensitive analysis without binding fields to instances
(i.e., tainting a field f of any object instance of type c taints
all fields f in all object instances of type c) [11]. These ap-
proaches are either inherently imprecise or incur excessive
runtime overhead rendering them inapplicable at large scale
for real-world apps [11, 16, 20, 21]. In contrast, we track
field reads and writes in a context-, flow-, and field-sensitive
manner by keeping record of field definitions in our Def-Use
analysis, using custom composite data-flow nodes represent-
ing field references, and encoding parent-child field flows and
flows through their corresponding instance registers in the
interprocedural dataflow graphs. Our construction allows us
to model taint tracking as a direct path-finding problem —
including flows through class fields — that can be efficiently
solved without sacrificing precision or scalability.

C2: Full vs. Partial Object Sensitivity. Statically determin-
ing and tracking the actual types of class references requires
full object-sensitivity which can be very prohibitive in terms
of computational overhead and memory consumption since it
requires identifying all object construction sites in an app and
propagating the actual object type information on all forward
and backward control-flow paths in the app in a flow- and
context-sensitive manner [10, 20, 21].

To allow FIRMSCOPE to scale to large apps, we opted for a
novel approach that involves only partial object-sensitivity by
performing custom on-demand context validation by main-
taining a per-tainted-path callstack and enforcing parent-child
type-compatibility up the callstack between sources and sinks
without full-blown type inference and tracking. By enforcing

type-compatibility we ensure that the receiver class type at
a call site is assignable from the class type of the callee. This
allows us to offer object-sensitivity over sibling classes and
single-definition virtual methods, but not for multi-definition
virtual methods between a child and its ancestors. Our
results show that partial object-sensitivity can be sufficient,
achieving comparable object-sensitivity precision to prior
solutions and scaling to real-world scenarios.

C3: Handling the Android Runtime Framework APIs.
Android apps heavily depend on the runtime framework APIs
which are not compiled into the apps and resemble a black
box for static analysis. Modeling the entirety of the Android
runtime can prove very expensive to develop, maintain, or
even analyze. Prior solutions approached this challenge by ei-
ther manually crafting extensive summarized flow rules (e.g.,
[9]), using approximate blanket policies for all runtime APIs
(e.g., [22]), or implementing simplified behaviors of select
APIs commonly used by apps (e.g., [11]). These approaches
were imprecise and unrealistic to properly implement or main-
tain at a large scale [11, 16, 20], especially for firmware apps
since they can access APIs not available to third-party apps.

In FIRMSCOPE, instead of modeling the entire Android
runtime or using blanket policies, we modeled information
flows only through Android framework methods and classes
that can carry data indirectly. We argue that the internal func-
tionalities of most of these framework APIs are not necessary
for static information flow analysis. Instead, what matters is
indirect data flows through these APIs, which can only happen
by a few methods and by classes that flow data between their
constructors/setters and member fields/getters. With this key
observation, our models totaled less than one thousand lines
of simple code (mostly assignment and return statements) and
covered Android v4.0 to v9.0. Note that we do not need to
model GUI-specific APIs since we consider user inputs as
trusted, i.e., if an app executes a sensitive functionality based
on a user request via the app’s GUI, then that behavior is not
a vulnerability, as mentioned in our threat model.

C4: Handling Asynchronous Callbacks. Android apps are
multi-threaded by design and utilize asynchronous tasks to
perform background operations. These asynchronous tasks
often trigger callbacks that can result in indirect data flows
depending on the runtime ordering of the callback events. For
example, in Figure 1 there is a discontinuation in control-
and data-flow at the code level between step Î and step Ï.
This gap is then bridged by the system itself by invoking the
callback in step Ï when the battery status changes. Correctly
accounting for all possible orderings in a flow- and context-
sensitive analysis has proven to be a challenging task [9–11].
Not considering all possible event orderings may result in
missing sensitive flows. On the other hand, considering all
possible event permutations may incur prohibitive analysis
overhead. Prior solutions have attempted to either model
some of the callback orderings using dummy injected methods

2382 29th USENIX Security Symposium USENIX Association

[9, 10] or use flow-insensitive analysis [11], often sacrificing
completeness and precision [20, 21, 23].

We overcome this by allowing information flowing through
instance fields to cross method boundaries without sacrificing
flow-sensitivity, enabling FIRMSCOPE to comprehensively
cover all possible callback orderings without needing to inject
dummy methods nor opt for a completely flow-insensitive
analysis (details in §4.2.2). Such a configuration positions
FIRMSCOPE in a unique spot compared to prior solutions. In
fact, and to the best of our knowledge, this is the closest static
approximation of how information flows through non-local
fields at runtime due to callbacks on Android.

C5: Handling Inter-component Communication. Compo-
nents in Android apps can communicate by sending and re-
ceiving messages (called Intents). Not accounting for out-
bound inter-component communication (ICC) may result in
missing sensitive flows [10, 24]. While this is especially true
for GUI apps since they depend on ICC for GUI transitions, it
is uncommon for sensitive functionalities in firmware apps to
span multiple components since these sensitive functionalities
are often standalone and non-end-user facing.

A key insight here is that the Intent used in an outbound ICC
call is often constructed within close code proximity to the
ICC call. Therefore, we recover Intent targets by identifying
the arguments at an Intent construction site and extracting the
target component name by backward tracking the arguments
through their Def-Use chains to their definition points. We
then install data flow edges from the ICC call sending the
Intent to the incoming ICC entry point in the target component
receiving the Intent (e.g., calls to getIntent(...)). This
approach offers a practical balance between precision and
runtime overhead, whereas prior solutions that used involved
techniques (e.g., [10,11]) proved unusable on our data set due
to their prohibitive runtime penalty (see §5).

4 Detailed Design

The workflow of FIRMSCOPE is illustrated in Figure 2. There
are two phases of analysis: preprocessing (§4.1) and static
taint analysis (§4.2). In this section, we present the detailed
design of FIRMSCOPE based on the workflow of the analysis.

4.1 Preprocessing

FIRMSCOPE fundamentally relies on static taint analysis to
identify vulnerabilities. To this end, a firmware image has
to go through a number of preprocessing steps. In particular,
when providing an Android firmware image, FIRMSCOPE un-
packs and extracts the individual file-system images contained
within the archive (§4.1.1). Then it extracts all system apps
contained within an image file, analyzes each extracted app’s
manifest and metadata, identifies exported components, and
disassembles the app’s Dalvik Executable (DEX) files (§4.1.2).

Build inter-procedural CFGsDisassemble & lift to IL

Build inter-procedural DFGs

Perform custom taint analysisUnpack firmware

Extract & canonicalize apps

Preprocessing Static Taint Analysis

Rules

Firmware Image Vulnerabilities

Figure 2: Workflow of FIRMSCOPE.

4.1.1 Unpacking Firmware Images

An Android firmware image is typically delivered as a com-
pressed archive containing multiple file system images pack-
ing the raw contents of device partitions (block devices).
Nearly all vendors store these block images using the stan-
dard Android Sparse Image (SIMG) format [25], which is a
compressed ext4 format that can be uncompressed using
Simg2img [26] and mounted or traversed using tools such as
e2tools [27]. However, after decompressing, it is not always
a standard process to unpack, since some vendors used cus-
tom block image formats that require either vendor-provided
or third-party unpacking tools, including: Huawei’s UApp for-
mat, unpackable using Splituapp [28]; HTC’s RUU archives,
unpackable using the HTC RUU DecryptTool [29]; Sony’s
.sin archives, unpackable using AnyXperia Dumper [30].
Some vendors also used Sparse Data (SDAT) block images,
which can be reconstructed into an SIMG using Sdat2img
[31]. For vendors without available unpacking tools, we used
simple heuristics that search for known SIMG/ext4 headers
and try to unpack from there. Often times, the image files
were padded with extra headers that, once stripped, revealed
standard images. These included images from vendors such
as Motorola and vendors using custom signed images. Some
vendors also used what is called a “sparse chunk” block image
which is basically an SIMG file split into multiple files each
with its own SIMG header. These can be converted to regular
SIMG files using Simg2img then stripping any excess headers.
The unpacking process is repeated recursively until all nested
archives within a firmware image are extracted. We also
search for and extract any build.prop and default.prop
files found in the block images for bookkeeping purposes as
these property files contain useful device information such as
the build fingerprint, exact make and model, the OS version,
and various build configurations.

4.1.2 Extracting and Disassembling Apps

From each unpacked firmware, we extract the Android frame-
work directory which contains device-specific compiled bi-
naries (ODEX and OAT files) necessary for disassembling pre-
installed apps packaged with the firmware. We then extract

USENIX Association 29th USENIX Security Symposium 2383

apps from all block images by searching and extracting files
matching any of the following formats DEX, ODEX, VDEX, OAT,
JAR, and APK. More information about the different formats
of pre-installed apps is available at [32].

Due to the various formats of pre-installed apps, we decided
to transform all extracted apps into a stand-alone canonical
APK format. These canonical apps typically contain one or
more traditional DEX class files, a binary XML manifest file,
and binary XML layout and resource files, in a well-structured
ZIP archive. To this end, and for devices containing pre-
compiled OAT apps, we used a combination of Oat2dex [33]
and Baksmali [34], and with reference to the framework
files extracted earlier, to extract the raw DEX classes embedded
inside the ODEX/VDEX/OAT files. This step outputs assembled
DEX classes or a directory of disassembled classes in Smali.2

We then disassemble any Dalvik bytecode into Smali and
translate the Smali code into a custom three-address code
intermediate language (IL) similar to Jasmin [35] and Jimple
[36]. Using an IL is a standard step to facilitate analysis [16].
We omit the detail about the IL and the translation step for
brevity. We also decompile the app’s binary XML manifest
file and extract metadata about the app and all its declared
components. Specifically, we extract the app package name
and version information, used and declared permissions, and
the fully qualified names and types of all exported components
along with any component-specific access permissions.

4.2 Static Taint Analysis

Next, FIRMSCOPE performs its static taint analysis on the
app. In particular, it first builds inter-procedural Control-
Flow Graphs (CFGs); reconstructs the class hierarchy and
resolves calls (§4.2.1); infers Def-Use chains, and builds inter-
procedural Data-Flow Graphs (DFGs) (§4.2.2); and finally
performs custom flow-, context-, field-sensitive, and partially
object-sensitive, taint analysis to identify vulnerable execu-
tion paths (§4.2.3). We present several constructions that
allow us to model taint tracking under our threat model as a
direct path-finding problem that can be efficiently solved us-
ing existing tools without sacrificing precision or scalability.

4.2.1 Building Inter-Procedural CFGs

The next step is to construct an inter-procedural CFGs
(ICFGs) for the app. We build ICFGs that have both call-
in and call-out edges that represent control-flow transfers to
target methods either within the same class as the caller or
in other classes in the app. Each node in the ICFG is a ba-
sic block consisting of a number of consecutive statements
ending in a control-transfer statement (e.g., jump). The entry

2Smali is a DEX assembler and also a Dalvik assembly language. Smali
is to Dalvik as Assembly is to Machine code. In the rest of this paper, we
use the terms “Dalvik instructions” and “Smali instructions” interchangeably
unless explicitly stated otherwise.

block to a method ICFG is labeled with the unique method
signature. For try-catch blocks, we identify all statements
inside a try-catch block that can throw an exception (i.e.,
statements using any of the following expressions: method
call, array access, casting, new instance, and explicit throw
statements) and add branch edges from each identified can-
throw statement within the try-catch block to the node
corresponding to the first statement in the catch block. This
per-method construction process is repeated for every method
in an app, resulting in a forest of ICFGs. We then build a
holistic ICFG by re-pointing call-in and call-out edges to the
entry blocks of their respective callee methods.

To install return-to-caller edges and call-out edges to virtual
methods defined in parent/child classes, we start by construct-
ing a precise class hierarchy for the whole app by adding
is-a edges between child and parent classes and interfaces
based on parent classes and interface references in the class
definitions in the bytecode. For external classes and methods
(referenced but not defined in the app) we generate skeleton
classes, fields, and method bodies by inspecting the class
hierarchy, field reads and writes, and call-out edges after
building all ICFGs and adding any missing edges. Given
the class hierarchy information, we then resolve all call and
return sites in the ICFGs by building callee-sets based on
the Dalvik method resolution semantics (see invoke-kind
in [37]) and add ICFG edges to target callee entry points and
caller return sites. Note that our resolution is static while
the semantics in [37] describe runtime resolution. Therefore,
we have to widen the target callee set while resolving non-
static/non-direct calls in order to produce a complete ICFG.
This widening may result in valid but not necessarily realiz-
able (at runtime) call transfers. We filter out unrealizable call
targets by narrowing down the callee set per call-site based
on object types on the call stack during taint analysis.

4.2.2 Building Inter-Procedural DFGs

Next, we annotate each instruction in the ICFG forest with its
Def-Use information, namely: incoming definition statements
(INS), outgoing definition statements (OUTS), and referenced
definitions (REFS). For each CFG, we produce an implicit
directed acyclic graph (DAG) representing data dependency
among the instructions in the CFG. The DAG is implicit in the
sense that no actual graph is generated, instead def-use and
use-def information are stored per each instruction in the CFG.
We use the use-def information to build interprocedural data-
flow graphs (IDFGs) atop which we perform taint analysis.

In particular, we developed a custom Def-Use analysis al-
gorithm to correctly track definitions and uses involving class
member fields as shown in Algorithm 1. Since Android apps
are written in Java and heavily use OOP, it is important to cor-
rectly capture the data flow semantics through member fields.
For instance, instructions writing to a member field not only
define that member field but also modify the definition of the

2384 29th USENIX Security Symposium USENIX Association

Algorithm 1: Field-Aware Def-Use Analysis.
input :CFG
output :CFG annotated with def-use and use-def chains

1 INS←{{ /0}}
2 OUTS←{{ /0}}
3 REFS←{{ /0}}
4 repeat
5 foreach instruction i ∈ CFG do
6 INS[i]← {all OUTS of predecessors of i}

7 if i reads a member field then
8 REFS[i][i.rhs.reg]← { j ∈ INS | j defines i.rhs.reg}
9 REFS[i][i.rhs]← { j ∈ INS | j defines i.rhs}

10 else if i writes a member field then
11 REFS[i][i.lhs.reg]← { j ∈ INS | j defines i.lhs.reg}
12 REFS[i][i.rhs]← { j ∈ INS | j defines i.rhs} ∪ { j ∈ INS | j defines a

(sub)field of i.rhs}

13 else
14 foreach operand r read by i do
15 REFS[i][r]← { j ∈ INS | j defines r} ∪ { j ∈ INS | j defines a

(sub)field of r}

16 if i is return then
17 KILLS[i]← INS[i]

18 else
19 KILLS[i]← { j ∈ INS | j defines an operand defined by i} ∪ { j ∈ INS |

j defines a (sub)field of an operand defined by i}
20 if i is a move instruction then
21 KILLS[i]← KILLS[i] ∪ { j ∈ INS | j defines r0 or e0}

22 GENS[i]← {operand r | i writes r}

23 OUTS[i]← GENS[i] ∪ (INS[i] - KILLS[i])

24 until OUTS stops changing;

field instance register (the register holding the this pointer of
the instance object) but without killing previous definitions of
the instance object. For example, in Figure 1, the assignment
to this.h.i inside the constructor of k kills all previous in-
scope definitions of this.h.i, creates a new definition of
this.h.i, and modifies the definition of this.h but without
killing previous definitions of this.h. Similarly, instructions
reading only an instance register (and not a member field of
the instance) also implicitly read all member fields accessible
via that instance register. Additionally, if an instance register
is redefined, then that redefinition also kills the definitions of
all fields accessible via that instance register. For example, if
the statement this.h = new j() is added after the assign-
ment to this.h.i in the constructor of k in Figure 1, that
statement would kill previous definitions of this.h, this
.h.i and this.h.x. Likewise, if this.h by itself flows
to the entry of a method foo, e.g., via a call foo(this.h),
then this.h.i and this.h.x also flow to the entry of foo.
Constructing Def-Use chains that correctly span reads and
writes through member fields and their instance registers is
essential for precise, field- and object-sensitive analysis.

We build an inter-procedural Data-Flow Graph (IDFG)
as a multi-graph consisting of data flow nodes, each of
which corresponds to one data flow source or destination
operand in a corresponding instruction. We route data
flow facts through all graph nodes by applying the data
propagation semantics associated with each instruction (e.g.,
an assignment statement propagates data from operands

Figure 3: A simplified illustrative figure of the IDFG constructed
by FIRMSCOPE for the code in Figure 1. White nodes correspond
to operands (registers, field references, and literals). Blue nodes
correspond to instance nodes through which we route flows concern-
ing the class instance and its fields. The tainted path from arg2
(taint source) at the entry of a.onReceive to the v2 argument of
the exec call (taint sink) is highlighted. The dotted blue edge would
result in a cross-field read from this.h.i to this.h.x which we
reject during context validation using the callstack at the Log.d call
(assuming Log.d was a sink).

on its RHS to the written register or field on its LHS).
Figure 3 shows a simplified representation of the IDFG
constructed by FIRMSCOPE corresponding to Figure 1.
Our IDFG construction can be considered a specialized
form of IFDS/IDE [38] with several extensions to handle
Dalvik-specific semantics which we discuss in the following.

Static and Instance Fields. We route data flows through
static fields (global fields bound to a class type rather than to
a specific class instance) and instance fields without requiring
an encapsulating method (to which the fields are deemed
local) to carry the data flow. For static fields, we create
special nodes in the IDFGs and route data flowing in and out
of static fields to operands based on statements semantics.
Note that the field reference used in an assignment statement
may not necessarily reference the containing class inside
which the field was declared. Therefore, for each referenced
static field, we search up the class hierarchy for the node
corresponding to the concrete declaration point of the field.

For each class containing instance fields, we add one global
node representing the instance pointer of the class object in-
stances, and one node for each field declared by the class
(referred to as class field henceforth). Note that in Dalvik,
the instance of this pointer is passed as the first argument
to non-void calls. Then, for assignment statements that read
instance fields, we add three flow edges: (i) from the local
field reference to the LHS register (written); (ii) from the

USENIX Association 29th USENIX Security Symposium 2385

instance register of the read field reference to the LHS reg-
ister; and (iii) from the global instance pointer node to the
instance register. Likewise, for written instance fields, we
flow the RHS register (read) to the local field reference and
to the instance register, and flow the instance register to the
global instance pointer. We also flow each class field to its
corresponding read instance field references, and flow written
instance field references that are live at return sites to their
corresponding class fields. An example of this is illustrated in
Figure 3 for the flows involving the this.h.i field in class
k from Figure 1. These constructions allow us to precisely
track all flows to and from instance fields and their aliases.

More importantly, these constructions also allow FIRM-
SCOPE to efficiently handle indirect flows through callbacks.
Prior solutions (e.g., [9]) attempted to handle this by creating
dummy encapsulating lifecycle methods to encapsulate some
of the known permutations involving callbacks. Creating
these lifecycle methods, however, requires correct modeling
of the execution semantics involving these flows, including
any app-defined callbacks, which cannot be automatically
done at scale. Other solutions (e.g., [10]) ignored these field
flows altogether, risking higher miss rates of sensitive flows.
Using the example in Figure 1, FIRMSCOPE allows the field
write this.h.i = arg2 to cross the method boundary of
the constructor k and flow back in at the exec call inside
method run, organically handling what would happen at
runtime when the system sends the battery status event that
would trigger the onReceive callback in class k, without
needing to model all possible callback permutations that may
be triggered at runtime inside class k.

Synthetic Methods. The Dalvik compiler generates accessor
synthetic methods (i.e., methods with a synthetic access
modifier) for nested classes that declare private fields that are
accessed by the enclosing class. These synthetic methods
also have the static modifier, yet they implicitly take the
nested instance pointer as the first argument and only read or
write a nested field. Some common names of these accessor
methods in Dalvik include access$, -get, -set, and -wrap.
We identify and handle synthetic accessor methods by also
routing flows through the nested instance registers and fields.

Inter-procedural Flows. We route flows across method
boundaries by adding edges from argument registers in the
caller’s call site to parameter registers at the callee entry point
on the forward edge, and adding edges from the return value
register in the callee return site of non-void methods to the
pseudo last-result register (i.e., r0) in the call site. This is
repeated for every possible caller-callee in the resolved callee
set, depending on the call resolution. If a non-resolved call
is non-static, we assume arguments can flow to the instance
receiver register (implicit first argument). In addition, we
implemented models and stubs for common non-GUI An-
droid 4.0 to 9.0 framework classes that can carry data from
arguments to return values or fields, including indirect flows

through the runtime APIs for threads, handlers, asynchronous
tasks, and common native calls such as java.lang.System
.arrayCopy(...).3 These stubs consisted of simple data-
flow edges and Smali snippets to carry the data from read
arguments to written arguments and return values.

4.2.3 Custom Taint Analysis

Given our IDFG construction, taint tracking is reduced to a
graph traversal problem from a taint source to one or more
taint sinks where taint sources and sinks are nodes in the
multi-graph. During traversal, we apply validation rules to
reject and prune paths that invalidate sensitivity goals. These
context validation rules are essential for efficiency and preci-
sion since the classical constructions used in prior solutions
do not necessarily scale in practice (see §3). For example,
we cannot provide context-sensitivity using call-site stacks
at a large scale since creating these stacks for every call site
proved computationally prohibitive, especially when virtual
calls are involved where multiple stacks would need to be
maintained per call site. In addition, flows through fields
must remain flow- and context-sensitive, but we cannot make
a copy of all nodes corresponding to a field every time the
field is accessed due to the obvious overhead this involves
and the complexity of tracking and linking all these copies to
where they are read and written throughout the app. There-
fore, eventually, our analysis achieves context, flow, and field
sensitivity, and partial object sensitivity:

• Context-Sensitive. We guarantee context-sensitivity by
pairing each call instruction with its own return pseudo
register, and maintaining a callstack overlaid atop each
tainted path during taint tracking. We use this callstack
to enforce control-flow on the backward edge by ensuring
that a return node flows back only to its corresponding
caller up the callstack. In addition, we prune unrealizable
virtual call paths by ensuring that caller and callee types
are compatible, i.e., the receiver class type at the call site
is assignable from the class type of the callee.4

• Flow- and Field-Sensitive. Our IDFG construction is flow-
sensitive since we take statement order into account and
track flow facts per program point. Our construction is
also field-sensitive since we track flows per class field. For
cross-field flows that may occur when we flow field writes
through the field instance node, we enforce field-sensitivity
over these flows by recording field flows in the call frames

3A list of Android framework APIs can be found at: https:
//raw.githubusercontent.com/aosp-mirror/platform_
frameworks_base/master/api/current.txt.

4We decided to only enforce type-compatibility rather than strict-typing
(possible by tracking type information from object definition sites to object
use sites) due to the computational cost incurred by dynamic type resolution
which proved prohibitive for many of the apps in our data set without yielding
significant improvements (orders of hours per app; less than 0.3% reduction
of output space on a random sample of 100 apps).

2386 29th USENIX Security Symposium USENIX Association

https://raw.githubusercontent.com/aosp-mirror/platform_frameworks_base/master/api/current.txt
https://raw.githubusercontent.com/aosp-mirror/platform_frameworks_base/master/api/current.txt
https://raw.githubusercontent.com/aosp-mirror/platform_frameworks_base/master/api/current.txt

of the callstack and ensuring that data flows out from the
same field it previously flew in up the callstack.

• Partially Object-Sensitive. Ensuring type-compatibility
makes our analysis object-sensitive over sibling and unre-
lated classes, object-sensitive over single definition meth-
ods, but object-insensitive over virtual methods with defi-
nitions both in a child and one of its ancestors.

• Path-Insensitive FIRMSCOPE is path-insensitive in the
sense that, while it flows information according to the
control-flow graph, the information flows irrespective of
conditional dependencies that might exist between disjoint
conditional branches. Path-sensitivity is a known hard
problem with no absolute solution in practice [39].

Detection Rules. We developed a rules engine that takes de-
tection rules as YAML files and invokes the taint engine as
needed. Specifically, we implemented rules and plugins to
detect the following privilege-escalation vulnerabilities: (i)
command injection; (ii) arbitrary app installation/removal;
(iii) code injection; (iv) factory reset of the device; (v) SMS
injection, including accessing, sending, and manipulating text
messages; (vi) device recording, including audio, video, and
screen recording; (vii) log leakage to external storage or to
other apps; (viii) AT Command injection; (ix) wireless settings
modification; and (x) system settings modification. Some of
these detectors involve additional analysis not discussed here-
with, such as reachability and string analysis, necessary for
capturing some vulnerability semantics. For instance, to de-
tect leakage of Logcat logs to external storage the detection
plugin detects cases where a vulnerable app contains byte-
code segments that execute the “logcat” system command
and writes its output to external storage either directly or per-
haps by reading the output then writing it out using an output
stream pointing to external storage. Likewise, the factory re-
set detection plugin needs to identify privileged apps that can
be externally influenced into sending out the MASTER_CLEAR
broadcast intent or writing the string “recovery --wipe
-data” to /cache/recovery/command on the device fol-
lowed by requesting a device reboot. Nevertheless, taint anal-
ysis remains the primary behavior modeling element of all
detectors in this study. Finally, for each identified weakness,
we report the vulnerable app meta data, the vulnerable compo-
nents and their permissions, and the relevant inter-procedural
traces through the app’s bytecode instructions and global
fields. Sample rules are shown in Appendix B.

5 Evaluation

We implemented FIRMSCOPE in 37 KSLOC of Cython,
Python, and C/C++, in addition to 1.6 KSLOC of Shell Script.
We used graph-tool [40] for efficient graph storage and
manipulation. This section presents our evaluation results.

Table 1: Per-firmware-vendor count of firmware images, the num-
ber of apps analyzed per vendor, and the distribution of analyzed
firmware Android versions (majors). Only vendors with more than
20 firmware images are shown.

Vendor # Firmware # Apps v4 v5 v6 v7 v8 v9
Alcatel 31 4,390 15 3 9 3 1 0
Alps 48 9,557 15 7 22 3 1 0
ASUS 93 17,944 16 24 21 19 13 0
BLU 132 16,355 32 17 58 20 5 0
Coolpad 29 3,429 12 7 3 1 6 0
Doogee 25 3,310 3 3 10 9 0 0
Elephone 23 2,840 4 10 5 3 1 0
Google 372 54,057 0 1 0 175 142 54
HTC 39 9,361 15 11 11 2 0 0
Huawei 63 9,143 19 21 19 3 1 0
Infinix 29 4,476 0 0 8 8 13 0
Lenovo 82 9,209 52 14 12 3 1 0
Motorola 65 11,101 5 17 13 19 11 0
Panasonic 21 2,963 6 3 5 5 2 0
Samsung 219 61,457 9 1 65 71 55 18
TCL 33 5,309 6 6 16 4 1 0
Tecno 55 8,057 21 6 8 8 12 0
XBO 72 8,264 24 35 13 0 0 0
Xiaomi 102 21,331 11 10 36 14 20 11
ZTE 73 10,557 12 13 24 24 0 0
Other 411 58,232 126 82 83 55 65 0
Total 2,017 331,342 403 291 441 449 350 83

19% 14% 22% 23% 17% 4%

We describe our primary dataset and experiment setup in §5.1,
then present and discuss the uncovered privilege-escalation
vulnerabilities by FIRMSCOPE in §5.2, followed by perfor-
mance benchmarks and comparisons with closely related
work in §5.3.

5.1 Dataset and Experiment Setup

We collected 2,017 publicly available (see Appendix A for
acquisition details) stock Android firmware images from v4.0
to v9.0 covering more than 100 Android vendors in total, in-
cluding the top 20 Android vendors worldwide. The firmware
images contained 331,342 apps with 15,144 unique package
names and 39,541 unique package versions. The details of
this corpus are shown in Table 1.5

We deployed FIRMSCOPE on three servers each running 64-
bit Ubuntu 18.04 on Intel(R) Xeon(R) E5-2630 v4 2.20GHz
with 40 logical cores and 150 GiB of RAM. We implemented
a pipeline using GNU Parallel [41] to manage jobs and dis-
tribute firmware images over the three servers, analyzing as
many apps in parallel as possible to maintain a maximum
server load of 80% with no memory swapping. We analyzed
each firmware image in full, regardless of whether some of
its apps might have appeared in other analyzed images.

5We use “vendor” to refer to the party responsible for providing (devel-
oping, building, and signing) a firmware image rather than the manufacturer
of a device. For instance, HTC is the device manufacturer of Nexus 9, but
Google is the device firmware vendor.

USENIX Association 29th USENIX Security Symposium 2387

Table 2: Summary of discovered privilege escalation vulnerabilities
and the percentage of vulnerable firmware.

Vulnerability # Total # Unique %Firmware
Command Injection 1,420 211 41%
Wireless Settings Modification 901 212 26%
SMS Injection 232 63 7%
Screen Recording 207 63 6%
Factory Reset 169 48 5%
System Properties Modification 160 54 5%
App (Un)Installation 153 54 5%
Full Logcat Leakage 110 85 4%
Microphone Audio Recording 61 38 2%
AT Command Injection 55 17 2%
Code Injection 15 5 1%
Total 3,483 850 77%

Table 3: Breakdown of discovered unique vulnerabilities per
firmware vendor. Only vendors with more than 20 firmware im-
ages are shown.

Vendor # Tota
l V

uln. p
er

firm
war

e

Unique Vulnera
bilit

ies

Com
man

d In
jec

tio
n

W
ire

les
s Sett

ings
M

od
ifica

tio
n

SM
S In

jec
tio

n

Scre
en

Reco
rd

ing

Fac
tor

y Rese
t

Syst
em

Pro
pert

ies
M

od
ifica

tio
n

App (U
n)In

sta
lla

tio
n

Full L
og

ca
t Lea

kag
e

M
icr

op
hon

e Audio
Reco

rd
ing

AT Com
man

d In
jec

tio
n

Cod
e In

jec
tio

n

Alcatel 1.3 23 15 0 4 1 0 0 0 0 3 0 0
Alps 1.1 21 20 0 0 0 1 0 0 0 0 0 0
ASUS 3.7 132 41 53 5 0 11 17 2 2 0 1 0
BLU 2.2 63 43 5 7 4 0 0 1 0 1 2 0
Coolpad 3 54 22 4 2 3 0 7 6 1 1 7 1
Doogee 3.3 48 26 2 6 9 1 0 2 0 0 2 0
Elephone 2.7 36 26 1 0 2 0 2 3 0 0 1 1
Google 0.6 21 0 3 18 0 0 0 0 0 0 0 0
HTC 1.5 27 4 15 8 0 0 0 0 0 0 0 0
Huawei 1.2 22 2 12 0 0 0 0 0 6 1 1 0
Infinix 0.6 8 2 0 2 1 0 3 0 0 0 0 0
Lenovo 1.2 44 21 4 2 1 1 1 0 11 1 2 0
Motorola 0.6 24 0 7 10 0 0 7 0 0 0 0 0
Panasonic 2.3 34 27 0 0 2 0 1 0 1 0 3 0
Samsung 3.3 178 16 50 1 15 29 0 30 37 0 0 0
TCL 1.4 33 20 1 0 1 0 0 0 0 9 2 0
Tecno 1.2 28 17 0 3 2 0 2 0 0 0 2 2
XBO 2.2 37 29 0 2 3 0 1 1 0 0 1 0
Xiaomi 2.2 118 46 27 4 1 0 5 2 19 13 1 0
ZTE 0.6 23 11 0 3 0 1 6 0 0 0 2 0
Other 1.7 239 82 50 20 23 6 20 15 8 11 2 2

5.2 Privilege Escalation Vulnerabilities

Table 2 shows the summary of our findings. We discovered
850 unique privilege escalation vulnerabilities (3,483 total)
spanning 77% of the analyzed firmware. We uniquified the
vulnerabilities by arranging identical vulnerability bytecode
traces into groups and counting each group only once. Com-
mand Injection vulnerabilities came at the top, impacting
more than one third of firmware images. We provide the
per-vendor breakdown by weakness category in Table 3.

Unsurprisingly, the most “vanilla” Android vendors,
namely Google and Motorola, had no discovered weaknesses
concerned with command or code execution. Since im-
ages from these vendors involve minimal customization over
AOSP, the chances of introducing severe weaknesses are min-
imized. In particular, we inspected the SMS Injection vulner-
abilities in Google firmware images and found that they all

1

1.5

2

2.5

v4 v5 v6 v7 v8

#F
in

di
ng

s p
er

 F
irm

w
ar

e

Android Version

Figure 4: Estimate degree of vulnerability of pre-installed apps in
different Android versions in the market measured as the number of
findings normalized by the number of analyzed firmware images per
Android version.

belonged to two specific versions of one system app on some
Android 7.0 and 7.1 images in which the subscriber ID could
be spoofed on dual-SIM devices. These weaknesses were
fixed in subsequent versions of the app in later image builds.
Also, the 3 Wireless Settings Modification vulnerabilities in
Google images were all cases where an attacker could modify
WiFi and Bluetooth configurations without permission and
have been fixed in a recent commit [42, 43].

Figure 4 shows the estimate degree of vulnerability of pre-
installed apps in different Android versions in the market
measured as the number of findings normalized by the num-
ber of analyzed firmware images per Android version. The
results suggest that there was a peak in Android weaknesses
around versions 5 and 6. (We excluded Android 9 from the
figure since its sample size was too small, in regard to the
number of vendors, compared to other versions in our dataset.)
We inspected the findings and found that a vulnerable ver-
sion of ADUPS [44] and a number of diagnostic apps that
were introduced in some Android 5 and 6 images were among
the primary contributors to these weaknesses and that most
of these vulnerable apps were retracted or patched in subse-
quent Android releases.6 We also investigated the slight peak
around version 8 and it appeared that the majority of the weak-
nesses were due to vulnerable apps and services introduced
by chipset manufacturers spanning several device vendors (in
some cases, more than 19 different device vendors had the
same suite of vulnerable chipset manufacturer apps).

The aggregate numbers of identified vulnerabilities in
AOSP vs. Vendor apps are shown in Table 4. About 92% of
the vulnerabilities were in apps (375 unique package names)
introduced by vendors, while only 8% of the vulnerabilities
were in AOSP (18 unique AOSP package names). These
results support the long-preached proposition that AOSP-like
images are more secure than vendor-customized images since
vendor modifications often introduce unforeseen weaknesses.

6ADUPS is a Shanghai based software provider for firmware over-the-air
(FOTA) updating services.

2388 29th USENIX Security Symposium USENIX Association

Table 4: Number of total vulnerabilities in AOSP vs Vendor apps
across all analyzed images and the number of unique package names
of impacted apps.

Distinct
Package Names

Total Vulnerabilities
Total v4 v5 v6 v7 v8 v9

AOSP 18 289 (8%) 13 24 40 187 19 6
Vendor 375 3,194 (92%) 539 572 812 507 592 172

In the following, we present two representative case stud-
ies showing some of the vulnerabilities discovered by FIRM-
SCOPE and how they can be exploited. More case studies are
presented in Appendix D.7

Vulnerability Case Study I: SplendidCommandAgent. A
range of Asus firmware contained a severe vulnerability in
a pre-installed platform app with a package name of com
.asus.splendidcommandagent. This app exhibited in-
adequate access control, allowing any app co-located on
the device to provide arbitrary commands for it to exe-
cute within its own context with system privileges. The
app’s manifest explicitly exported a bound service named
SplendidCommandAgentService that receives and exe-
cutes commands. A bound service allows client apps to bind
to the service and call exposed methods using an interface
returned from its onBind method, providing richer commu-
nication than unbound services. The command string flows
to the java.lang.Runtime.exec(String) API where the
entire command is externally controlled (i.e., there are no
hard-coded components of the command).

The SplendidCommandAgentService service exposed
an interface named ISplendidCommandAgentService con-
taining a single method, doCommand(String), that sim-
ply executed the string parameter as a command. To in-
teract with the interface, the client app first binds to the
service to obtain an IBinder reference. As the client
app will likely lack the programming interface for the
bound service, it inserts the command string to be exe-
cuted in a Parcel and calls the IBinder.transact(int
, Parcel, Parcel, int) method with the appropriate
function number to initiate IPC, transferring the Parcel to
the SplendidCommandAgentService bound service. The
bound service extracts the string from the received Parcel
object, and provides it to the doCommand(String) for execu-
tion using the java.lang.Runtime.exec(String) API.

Vulnerability Case Study II: LovelyFont. The
LovelyFont apps consist of two related and interact-
ing apps that effectively provide a covert local and remote
Command and Control (C&C) channel. These two apps are
devils in disguise. On the surface, they offer the functionality
of allowing the user to change the default system font
(presumably to more “lovely” variants). Interestingly though,

7All case studies detailed herewith have been responsibly disclosed to
impacted vendors at least 90 days prior to the time of this writing.

Table 5: Count of vendors firmware containing a version of the
LovelyFont apps containing at least one vulnerability.

Vendor # Vulnerable Firmware
Total v5 v6 v7 v8

Tecno 20/55 2 2 3 13
Infinix 7/30 0 3 4 0
Lava 5/8 0 0 0 5
ASUS 3/94 0 0 3 0
Coolpad 3/35 0 0 0 3
Elephone 1/23 0 1 0 0
Haier 1/5 0 0 0 1
SWIPE 1/3 1 0 0 0
Walton 1/1 0 0 0 1

the two apps stealthily run in the background and are hidden
from the user (they do not appear in the device app launcher).

We describe the functionality in terms of the two most
popular package names in our dataset for the LovelyFont
app suite: (i) The com.lovelyfont.defcontainer sys-

tem app provides interfaces to execute commands and dy-
namically execute code by its (ii) accompanying app, com
.ekesoo.lovelyhifonts, which polls a remote server for
commands to execute. If the com.ekesoo.lovelyhifonts
app obtains any commands to execute, it uses an exported
and accessible service component, FontCoverService, in
the com.lovelyfont.defcontainer app to execute the
commands.8 The FontCoverService app component is ex-
ported and not permission-protected, allowing any app on the
device to execute commands with elevated privileges. Table 5
provides the number of firmware by vendor that contained a
vulnerable version of the LovelyFont apps.

The LovelyFont apps utilize HTTP communication for
the endpoints involving the C&C channel, exposing the user
to potential Man-In-The-Middle (MITM) attacks. Curiously,
ADUPS also implemented their C&C channel over HTTP
[44]. The com.lovelyfont.defcontainer also contained
an exported app component called FunctionService that
allowed local and remote execution of arbitrary Dalvik byte-
code as the system user (a Code Injection vulnerability). The
FunctionService component allowed a client app to pro-
vide the path to a DEX file, the fully-qualified class name,
method name, and the type and values of parameters to be
executed. This affords great power and flexibility to client
apps using these capabilities, allowing them to obtain secret
key material, such as the passwords of saved WiFi networks.

5.3 Benchmarking FIRMSCOPE Performance

We benchmarked FIRMSCOPE’s taint analysis detection per-
formance on the latest DroidBench 2.0 [12] against the state-
of-the-art static taint analysis systems for Android in the liter-
ature, namely: FlowDroid [9], Amandroid [10], and Droid-
Safe [11]. DroidBench 2.0 contains over 100 hand-crafted
benchmarks to assess the accuracy and precision of static and

8We also identified instances where the two LovelyFont apps had alter-
nate package names with equivalent functionality.

USENIX Association 29th USENIX Security Symposium 2389

Table 6: Summary of DroidBench 2.0 benchmark results. The bench-
mark consists of 100 real Positives (Ps) and 20 real Negatives (Ns).

Benchmarks FlowDroid Amandroid DroidSafe FIRMSCOPE
FP FN FP FN FP FN FP FN

Aliasing 0 0 0 0 0 0 0 0
AndroidSpecific 0 2 0 2 0 1 0 1
ArraysAndLists 4 0 4 2 4 0 3 0
Callbacks 2 1 7 9 4 0 1 1
EmulatorDetection 0 0 0 0 0 0 0 0
FieldAndObjectSensitivity 0 0 0 0 2 0 0 0
GeneralJava 4 4 4 5 2 1 3 2
InterComponentComm. 0 8 2 0 0 1 0 4
Lifecycle 0 9 3 10 11 8 0 3
Reflection 0 0 0 2 0 0 0 0
Threading 0 0 0 0 5 4 0 0
Total (lower is better) 10 24 20 30 28 15 7 11

dynamic Android taint analysis tools, covering various anal-
ysis aspects and common Java and Android constructs.9 We
used FlowDroid v2.0 (without the IccTA extension), Aman-
droid v3.1.1, and the latest version of DroidSafe that was
available as of June 2016. The benchmark summaries are
shown in Table 6 (details are given in Appendix C). Overall,
FIRMSCOPE had the highest detection power of all bench-
marked solutions, incurring only 7 FPs and 11 FNs.10 We em-
phasize that FIRMSCOPE’s low number of FPs is paramount
in practice, especially given the large number of firmware
images and apps in the market.

We used the FPs incurred by FIRMSCOPE on DroidBench
as sample reference cases to arrive at a rough estimate of the
number of FPs in our real-world findings. We computed the
worst-case scenario false discovery rate (FDR) in our findings
by assuming all identified vulnerabilities containing any of
the constructs appeared in these 7 cases were FPs, coming
to a total of 451 findings out of 3,483 (12.95%). This ac-
counts to less than 0.22360 FP per firmware and less than
0.00136 FP per app. We also manually inspected a sample
of 400 identified vulnerabilities in Android 7 to 9 (by vali-
dating the semantics of their bytecode traces and checking
for any incorrect tainted flows) and found less than 9% false
discoveries.

5.3.1 Runtime Performance

The total start-to-finish runtime of FIRMSCOPE on the 2017
images was approximately 37 d (note that we had only three
servers in our farm; this start-to-finish time is inverse propor-
tional to the number of servers). In terms of per firmware
and per app runtime, it took 4,901 s (81.7 min) per firmware
on average with 50% of firmware images finishing in less
than 3,342 s (55.7 min) and 95% finishing in less than 7,785 s
(129.8 min). Apps took about 424 s (7.1 min) on average for

9DroidBench bundles an extensive set of benchmarks implemented as
“miniature apps” with an established ground truth in terms of true positives
and true negatives.

10We avoid discussing the overall precision and recall of the comparants
since the reported DroidBench metrics are only useful for limited-scale
comparisons and might not be commensurate with the overall performance
of the measured tools on all categories of real-world apps.

Table 7: Summary of DIALDroid-Bench benchmark results with a
30 min timeout limit. The Runtime column gives the min., avg., and
max. runtime in minutes.

Tool # Analyzed # Timeout Runtime (min)
FlowDroid 18 12 0.42, 2, 30+
Amandroid 21 9 3.00, 8, 30+
DroidSafe 5 25 2.00, 5, 30+
FIRMSCOPE 30 0 0.05, 2, 12

static analysis (from analyzing metadata all the way to finish-
ing the custom taint analysis) with 50% and 95% of the apps
finishing in less than 53 s and 327 s (5.5 min), respectively.

On DroidBench, FlowDroid took 10 s on average, while
Amandroid and DroidSafe took 2 min on average despite
DroidBench minimalist apps. (DroidSafe took more than
10 min to finish on some of these benchmarks.) FIRMSCOPE
consumed the least amount of time among the comparants,
requiring less than 5 s per DroidBench app (2X faster than
FlowDroid, 24X faster than Amandroid and DroidSafe).

We also measured the runtime performance on
DIALDRoid-Bench, a representative sample of 30
real-world apps from Google Play [45] that appeared in
related studies [20, 21, 46]. We used the same configuration
as [20] by setting a maximum execution time of 30 min per
app. The results of this benchmark are shown in Table 7.
Neither FlowDroid, Amandroid, nor DroidSafe were able to
process each of the apps within the allotted time: FlowDroid
timed out on 12 apps, Amandroid on 9 apps, and DroidSafe
on 25 apps. In contrary, FIRMSCOPE processed the 30
apps without exceeding the time limit, taking only 2 min
on average and 12 min at a maximum. We observed similar
results on the standard Android 9 Settings app (one of the
largest apps that come pre-installed on every device) where
all comparants but FIRMSCOPE timed out after 30 min while
FIRMSCOPE analyzed it in less than 19 min. In summary, our
results show that FIRMSCOPE outperforms prior work in
terms of both detection power and scalability to large apps.

6 Discussion and Future Work

Extra Semantics. We currently handle calls invoked via re-
flection in a manner similar to [47]. Although this captures
the majority of cases we have seen in practice, there are
certain constructs that are not handled (e.g., nested reflec-
tion and reflection through native code). We do not model
the internals of containers except for primitive array reads
and writes. Writing a tainted value to a container eventually
results in tainting the entire container (e.g., once the con-
tainer crosses a method boundary) and vice versa. We also
do not model all the semantics of throwing exceptions. For
instance, apps can register a special global exception handler
for all uncaught exceptions (e.g., using java.lang.Thread
.setDefaultUncaughtExceptionHandler(...)) creat-
ing potential information flows from uncaught exceptions and

2390 29th USENIX Security Symposium USENIX Association

their runtime contexts to the handler. We plan on supporting
more of these semantics in future work.

Exploit Generation. While responsibly disclosing the find-
ings, some vendors were only interested in exploit proof-of-
concepts (PoCs) rather than the bytecode path traces discov-
ered by FIRMSCOPE. Manually developing PoCs proved a
rather laborious process. We are working on a novel system
to help automatically synthesize PoC exploits to trigger vul-
nerabilities identified by FIRMSCOPE by means of selective
symbolic execution and path condition analysis which we
plan on presenting in a future work.

7 Related Work

Clearly, we are not the first to study the security of
pre-installed apps within Android firmware. For instance,
Woodpecker [48] made a first step in analyzing the security
of Android firmware, in particular the permission models in
pre-installed apps. By analyzing 8 popular Android phones, it
discovered 11 out of 13 privileged permissions can be leaked.
SEFA [3] studied the impact of vendor customizations,
performing a permission and vulnerability analysis of
pre-installed apps. With a provenance analysis of 10 popular
firmware images from five major vendors, it discovered
85.78% of all preloaded apps are actually over-privileged.

ADDICTED [4] analyzed the device driver customizations
in Android Device, and found such customization can in-
troduce serious security flaws that allow unprivileged app
to execute security-sensitive operations such as taking pic-
tures. DroidRay [14] used a control flow signature match-
ing approach to scan the security of 250 Android firmwares
and 24,009 pre-installed apps and discovered that 7.6% of
firmwares in their dataset contained pre-installed malware.

Vendor customization of the firmware can also introduce
new attack surfaces such as hanging attribute references
(Hares) [5] and privileged AT commands [49]. Using an auto-
mated analysis with 97 firmware images, HareHunter [5] dis-
covered tens of thousands of likely Hares flaws. With a corpus
of 2,000 Android firmware, Tian et. al. [49] uncovered 3,500
AT commands, many of which can be exploited via USB to ex-
ecute dangerous operations such as bypassing the screen lock.

Most recently, Gamba et al. [50] made a comprehensive
study, especially of privacy issues and use of “custom” and
platform permissions by pre-installed apps in Android de-
vices. They used an outsourcing approach to collect both the
pre-installed apps and the network traffic from live devices.
They discovered that advertising and data-driven services
were among the primary incentives for vendors to include pre-
installed apps, and argued that the privileged nature of these
apps coupled with their obscurity and lack of transparency
could potentially lead to backdoored access, which is exactly
what FIRMSCOPE aims to uncover.

8 Conclusion and Final Remarks

Pre-installed apps in Android firmware present a potent attack
vector due to their access to privileged permissions, potential
widespread presence, and the fact that they often cannot be
disabled or removed. We have presented FIRMSCOPE, an effi-
cient and practical analysis system to uncover different types
of vulnerabilities in pre-installed apps. By analyzing over
331,342 apps in 2,017 Android version 4 to 9 firmware im-
ages from over 100 Android vendors, FIRMSCOPE uncovered
3,483 privilege-escalation vulnerabilities including command
injection, app installation, device recording, among others.

Coordinated Disclosure. We are following a coordinated
vulnerability disclosure process in which we responsibly dis-
close our findings to vendors and allow them to test and offer
corrective measures before any party releases detailed vulner-
ability or exploit information to the public. Some challenges
in the disclosure process we encountered were: (i) Finding the
appropriate procedure or contact point within an organization
for reporting vulnerabilities. (ii) Most vendors requested PoC
exploits instead of the bytecode traces produced by FIRM-
SCOPE, requiring us to manually go through the findings,
assess exploitability, develop PoCs, and prepare exploitation
reports laying out the technical details of each exploitable
vulnerability. (iii) Absence of response from certain vendors
precluding us from knowing if they confirm a vulnerability
and plan to fix it. At the time of this writing, only Android
versions 7 to 9 were covered by security updates. While our
exploitability assessment and disclosure process is still ongo-
ing, we have verified and reported more than 370 zero-day
vulnerabilities in Android 7 to 9 and received 147 CVEs in
the CVE-2019-15xxx block thus far, involving 30 vendors,
20 unique package names, and 26 unique package versions.

Acknowledgments

We thank Dimitris Tsiounis and Nick Kiourtis for providing
technical assistance and for many constructive conversations.
We also thank the anonymous reviewers and our shepherd,
Benjamin Andow, for their insightful remarks.

This work was partially supported by the U.S. De-
partment of Homeland Security (DHS) under contract
70RSAT19C00000007. The team at The Ohio State Univer-
sity was partially supported by National Science Foundation
(NSF) award 1834215. Opinions expressed in this article are
those of the authors and do not necessarily reflect the official
policy or position of any agency of the U.S. government.

USENIX Association 29th USENIX Security Symposium 2391

References

[1] Mobile Operating System Market Share Worldwide
| Statcounter Global Stats, http://gs.statcounter.com/
os-market-share/mobile/worldwide.

[2] Operating System Market Share Worldwide, retrieved March
27, 2019 from http://gs.statcounter.com/os-market-share.

[3] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang, “The impact
of vendor customizations on android security,” in Proceed-
ings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013.

[4] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang, “The
peril of fragmentation: Security hazards in Android device
driver customizations,” in 2014 IEEE Symposium on Security
and Privacy. IEEE, 2014.

[5] Y. Aafer, N. Zhang, Z. Zhang, X. Zhang, K. Chen, X. Wang,
X. Zhou, W. Du, and M. Grace, “Hare hunting in the wild
android: A study on the threat of hanging attribute references,”
in Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security. ACM, 2015.

[6] R. Johnson, M. Elsabagh, A. Stavrou, and J. Offutt,
“Dazed droids: A longitudinal study of android inter-app
vulnerabilities,” in Proceedings of the 2018 on Asia Conference
on Computer and Communications Security, ser. ASIACCS
’18. New York, NY, USA: ACM, 2018. [Online]. Available:
http://doi.acm.org/10.1145/3196494.3196549

[7] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “Pios: Detecting
privacy leaks in ios applications.” in NDSS, 2011.

[8] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“Appintent: Analyzing sensitive data transmission in android
for privacy leakage detection,” in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security.
ACM, 2013.

[9] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps,” Acm Sigplan Notices, vol. 49, no. 6,
2014.

[10] F. Wei, S. Roy, X. Ou et al., “Amandroid: A precise and
general inter-component data flow analysis framework for se-
curity vetting of android apps,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2014.

[11] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen,
and M. C. Rinard, “Information Flow Analysis of Android
Applications in DroidSafe.” in Proceedings of Network and
Distributed System Security Symposium (NDSS), 2015.

[12] secure-software-engineering/DroidBench: A micro-benchmark
suite to assess the stability of taint-analysis tools for An-
droid, retrieved October 4, 2019 from https://github.com/
secure-software-engineering/DroidBench.

[13] core/res/AndroidManifest.xml - platform/framework-
s/base - Git at Google, retrieved October 4, 2019 from
https://android.googlesource.com/platform/frameworks/base/
+/master/core/res/AndroidManifest.xml.

[14] M. Zheng, M. Sun, and J. Lui, “Droidray: a security evaluation
system for customized android firmwares,” in Proceedings
of the 9th ACM symposium on Information, computer and
communications security. ACM, 2014.

[15] H. Zhang, D. She, and Z. Qian, “Android ion hazard: The
curse of customizable memory management system,” in Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2016.

[16] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel,
D. Octeau, J. Klein, and L. Traon, “Static analysis of android
apps: A systematic literature review,” Information and Soft-
ware Technology, vol. 88, 2017.

[17] D. Song, F. Hetzelt, D. Das, C. Spensky, Y. Na, S. Volckaert,
G. Vigna, C. Kruegel, J.-P. Seifert, and M. Franz, “Periscope:
An effective probing and fuzzing framework for the hardware-
os boundary,” in Proceedings of Network and Distributed Sys-
tem Security Symposium (NDSS), 2019.

[18] A. Machiry, C. Spensky, J. Corina, N. Stephens, C. Kruegel,
and G. Vigna, “Dr. checker: A soundy analysis for linux ker-
nel drivers,” in 26th USENIX Security Symposium (USENIX
Security 17), 2017.

[19] L. Zhang, Z. Yang, Y. He, Z. Zhang, Z. Qian, G. Hong,
Y. Zhang, and M. Yang, “Invetter: Locating insecure
input validations in android services,” in Proceedings
of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’18. New
York, NY, USA: ACM, 2018. [Online]. Available:
http://doi.acm.org/10.1145/3243734.3243843

[20] F. Pauck, E. Bodden, and H. Wehrheim, “Do android
taint analysis tools keep their promises?” in Proceedings
of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2018.
New York, NY, USA: ACM, 2018. [Online]. Available:
http://doi.acm.org/10.1145/3236024.3236029

[21] L. Qiu, Y. Wang, and J. Rubin, “Analyzing the Analyzers:
FlowDroid/IccTA, AmanDroid, and DroidSafe,” in Proceed-
ings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2018.

[22] J. Kim, Y. Yoon, K. Yi, and J. Shin, “ScanDal: Static analyzer
for detecting privacy leaks in android applications,” in MoST
2012: Mobile Security Technologies 2012, H. Chen, L. Koved,
and D. S. Wallach, Eds. Los Alamitos, CA, USA: IEEE,
May 2012.

[23] B. Reaves, J. Bowers, S. A. Gorski III, O. Anise, R. Bobhate,
R. Cho, H. Das, S. Hussain, H. Karachiwala, N. Scaife et al.,
“* droid: Assessment and evaluation of android application
analysis tools,” ACM Computing Surveys (CSUR), vol. 49,
no. 3, 2016.

[24] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein,
and Y. Le Traon, “Effective inter-component communication
mapping in android: An essential step towards holistic security
analysis,” in 22nd USENIX Security Symposium, 2013.

[25] Partitions and Images, retrieved October 4, 2019 from https:
//source.android.com/devices/bootloader/partitions-images.

2392 29th USENIX Security Symposium USENIX Association

http://gs.statcounter.com/os-market-share/mobile/worldwide
http://gs.statcounter.com/os-market-share/mobile/worldwide
http://gs.statcounter.com/os-market-share
http://doi.acm.org/10.1145/3196494.3196549
https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://android.googlesource.com/platform/frameworks/base/+/master/core/res/AndroidManifest.xml
https://android.googlesource.com/platform/frameworks/base/+/master/core/res/AndroidManifest.xml
http://doi.acm.org/10.1145/3243734.3243843
http://doi.acm.org/10.1145/3236024.3236029
https://source.android.com/devices/bootloader/partitions-images
https://source.android.com/devices/bootloader/partitions-images

[26] anestisb/android-simg2img: Tool to convert Android sparse
images to raw images, retrieved October 4, 2019 from https:
//github.com/anestisb/android-simg2img.

[27] e2tools - utilities to manipulate files in an ext2/ext3 filesys-
tem, retrieved October 4, 2019 from https://www.unix.com/
man-page/all/7/e2tools/.

[28] superr/splituapp: Unpack UPDATE.APP files, retrieved Octo-
ber 4, 2019 from https://github.com/superr/splituapp.

[29] nkk71/HTC-RUU-Decrypt-Tool: Universal HTC RUU/ROM
Decryption Tool, retrieved October 4, 2019 from https://github.
com/nkk71/HTC-RUU-Decrypt-Tool.

[30] munjeni/anyxperia_dumper: Tool for dump any Sony Xpe-
ria image, retrieved October 4, 2019 from https://github.com/
munjeni/anyxperia_dumper.

[31] xpirt/sdat2img: Convert sparse Android data image into
filesystem ext4 image, retrieved October 4, 2019 from https:
//github.com/xpirt/sdat2img.

[32] Configuring ART | Android Open Source Project, retrieved
October 4, 2019 from https://source.android.com/devices/tech/
dalvik/configure.

[33] testwhat/SmaliEx: A wrapper to get de-optimized dex from
odex/oat/vdex., retrieved October 4, 2019 from https://github.
com/testwhat/SmaliEx.

[34] JesusFreke/smali: smali/baksmali, retrieved October 4, 2019
from https://github.com/JesusFreke/smali.

[35] J. Meyer, Jasmin Assembler, 1996, retrieved October 4, 2019
from http://jasmin.sourceforge.net/about.html.

[36] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam,
and V. Sundaresan, “Soot - a java bytecode optimization
framework,” in Proceedings of the 1999 Conference of the
Centre for Advanced Studies on Collaborative Research,
ser. CASCON ’99. IBM Press, 1999. [Online]. Available:
http://dl.acm.org/citation.cfm?id=781995.782008

[37] Dalvik Bytecode | Android Open Source Project, retrieved
October 4, 2019 from https://source.android.com/devices/tech/
dalvik/dalvik-bytecode.

[38] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural
dataflow analysis via graph reachability,” in Proceedings of
the 22nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. ACM, 1995.

[39] S. Gulwani and G. C. Necula, “Path-sensitive analysis for
linear arithmetic and uninterpreted functions,” in International
Static Analysis Symposium. Springer, 2004.

[40] T. P. Peixoto, “The graph-tool Python library,” figshare, 2014.
[Online]. Available: http://figshare.com/articles/graph_tool/
1164194

[41] O. Tange, “GNU Parallel - The Command-Line Power Tool,”
;login: The USENIX Magazine, vol. 36, no. 1, Feb 2011.
[Online]. Available: http://www.gnu.org/s/parallel

[42] Android Security Bulletin—November 2018 | Android Open
Source Project, retrieved March 19, 2019 from https://source.
android.com/security/bulletin/2018-11-01.

[43] 6409cf5c - platform/packages/apps/Settings - Git
at Google, retrieved March 21, 2019 from https:
//android.googlesource.com/platform/packages/apps/
Settings/+/6409cf5c94cc1feb72dc078e84e66362fbecd6d5.

[44] R. Johnson, A. Stavrou, and A. Benameur, “All Your SMS
& Contacts Belong To Adups & Others,” 2017, blackhat
USA. [Online]. Available: https://www.blackhat.com/
docs/us-17/wednesday/us-17-Johnson-All-Your-SMS-&
-Contacts-Belong-To-Adups-&-Others.pdf

[45] DIALDroid Benchmark, retrieved November 7, 2019 from
https://github.com/amiangshu/dialdroid-bench.

[46] A. Bosu, F. Liu, D. D. Yao, and G. Wang, “Collusive data leak
and more: Large-scale threat analysis of inter-app communica-
tions,” in Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security. ACM, 2017.

[47] B. Livshits, J. Whaley, and M. S. Lam, “Reflection analysis
for java,” in Asian Symposium on Programming Languages
and Systems. Springer, 2005.

[48] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic
detection of capability leaks in stock android smartphones.” in
NDSS, vol. 14, 2012.

[49] D. J. Tian, G. Hernandez, J. I. Choi, V. Frost, C. Raules,
P. Traynor, H. Vijayakumar, L. Harrison, A. Rahmati, M. Grace
et al., “Attention spanned: Comprehensive vulnerability analy-
sis of {AT} commands within the android ecosystem,” in 27th
USENIX Security Symposium (USENIX Security 18), 2018.

[50] J. Gamba, M. Rashed, A. Razaghpanah, J. Tapiador, and
N. Vallina-Rodriguez, “An analysis of pre-installed android
software,” in 2020 IEEE Symposium on Security and Privacy.
IEEE, 2020.

[51] RuntimeException, retrieved October 4, 2019 from
https://docs.oracle.com/javase/8/docs/api/java/lang/
RuntimeException.html.

[52] Java Language Specifications: 12.4. Initialization of Classes
and Interfaces, retrieved October 4, 2019 from https://docs.
oracle.com/javase/specs/jls/se7/html/jls-12.html#jls-12.4.

[53] CVE - CVE-2018-9525, retrieved March 19, 2019 from https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-9525.

A Android Firmware Acquisition

We downloaded firmware images from official vendor web-
sites whenever possible. For vendors that did not have an offi-
cial firmware download center, we downloaded their firmware
images from third-party websites. Table A.1 shows the list of
URLs from which we crawled firmware images in this study.
We automated the firmware collection and downloading pro-
cess by implementing web-crawlers using Scrapy11.

11https://scrapy.org/

USENIX Association 29th USENIX Security Symposium 2393

https://github.com/anestisb/android-simg2img
https://github.com/anestisb/android-simg2img
https://www.unix.com/man-page/all/7/e2tools/
https://www.unix.com/man-page/all/7/e2tools/
https://github.com/superr/splituapp
https://github.com/nkk71/HTC-RUU-Decrypt-Tool
https://github.com/nkk71/HTC-RUU-Decrypt-Tool
https://github.com/munjeni/anyxperia_dumper
https://github.com/munjeni/anyxperia_dumper
https://github.com/xpirt/sdat2img
https://github.com/xpirt/sdat2img
https://source.android.com/devices/tech/dalvik/configure
https://source.android.com/devices/tech/dalvik/configure
https://github.com/testwhat/SmaliEx
https://github.com/testwhat/SmaliEx
https://github.com/JesusFreke/smali
http://jasmin.sourceforge.net/about.html
http://dl.acm.org/citation.cfm?id=781995.782008
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
http://figshare.com/articles/graph_tool/1164194
http://figshare.com/articles/graph_tool/1164194
http://www.gnu.org/s/parallel
https://source.android.com/security/bulletin/2018-11-01
https://source.android.com/security/bulletin/2018-11-01
https://android.googlesource.com/platform/packages/apps/Settings/+/6409cf5c94cc1feb72dc078e84e66362fbecd6d5
https://android.googlesource.com/platform/packages/apps/Settings/+/6409cf5c94cc1feb72dc078e84e66362fbecd6d5
https://android.googlesource.com/platform/packages/apps/Settings/+/6409cf5c94cc1feb72dc078e84e66362fbecd6d5
https://www.blackhat.com/docs/us-17/wednesday/us-17-Johnson-All-Your-SMS-&-Contacts-Belong-To-Adups-&-Others.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Johnson-All-Your-SMS-&-Contacts-Belong-To-Adups-&-Others.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Johnson-All-Your-SMS-&-Contacts-Belong-To-Adups-&-Others.pdf
https://github.com/amiangshu/dialdroid-bench
https://docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html
https://docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html
https://docs.oracle.com/javase/specs/jls/se7/html/jls-12.html#jls-12.4
https://docs.oracle.com/javase/specs/jls/se7/html/jls-12.html#jls-12.4
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-9525
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-9525
https://scrapy.org/

Table A.1: List of online resources from which we downloaded
Android stock firmware images.

Vendor URL
ASUS https://www.asus.com/support/
Google https://developers.google.com/android/images/
HTC https://www.htc.com/us/support/rom-downloads.html
Huawei https://consumer.huawei.com/en/support/
Oppo https://oppo-au.custhelp.com
ZTE https://www.ztedevices.com/en/support/
Other https://androidmtk.com

https://firmwarecare.com
https://www.stockrom.net

B Sample Detection Rules

B.1 Sample Command Execution Rules

The following is a snippet of the YAML rules used for Com-
mand Execution detection:

impact: ...
CWEs: ...
description: ...
sources:
- entry: onTransact(ILandroid/os/Parcel;Landroid/os/

Parcel;I)Z
operands: [2]

- entry: onReceive(Landroid/content/Context;Landroid/
content/Intent;)V

operands: [2]
- entry: onStartCommand(Landroid/content/Intent;II)I
operands: [1]

- ...
sinks:
- call: Ljava/lang/Runtime;->exec(*)
- call: Ljava/lang/ProcessBuilder;->command(*)
- ...

B.2 Sample Factory Reset Detection Rules

The Factory Reset detector implements the following steps:

1. Detect a data flow path from a component entry point E to
an API call site A1 that sends a Broadcast Intent.

2. Detect the string "android.intent.action.
MASTER_CLEAR" flowing to A1 and falling on the
same control-flow path from E to A1.

3. Detect the string "--wipe-data" flowing to an API call
site A2 that writes it to a file output stream.

4. Detect the string "/cache/recovery/command" flowing
to the construction site of the stream object at A2.

5. Detect a data flow from the string "recovery" to an API
call A3 that reboots the device.

6. Finally, detect a control-flow path from A1 to A2 to A3.

C Benchmarking Details and Discussion

Table C.2 shows the detailed DroidBench 2.0 results.
FIRMSCOPE incurred one FP in each of 13.ArrayAccess2,
16.HashMapAccess, and 17.ListAccess1 due to tainted data
flowing to a container object then non-tainted data flowing out
of the same object. All tools in our comparison triggered FPs
on these test cases. Statically tracking data through specific
container elements is an NP-Hard problem since it requires
full pointer analysis. FIRMSCOPE encountered no FPs in
12.ArrayAccess1 because we modeled reads and writes to
primitive arrays and 12.ArrayAccess1 used constant hard-
coded offsets to read and write to a primitive array.

In 33.Unregister1, a button click callback that leaks the
IMEI via text message is registered then immediately unregis-
tered in a subsequent statement, triggering a FP according to
DroidBench under the proposition that the (unregistered) call-
back will not execute at runtime. Likewise, in 47.Exceptions3
a catch block leaks the IMEI when a RuntimeException
is thrown and caught, but the code in the try block is pre-
sumed to not throw any RuntimeExceptions at runtime.
We argue that this case is unrealistic since exceptions of the
RuntimeException type are unchecked exceptions that can
be thrown during the normal operation of the JVM [51],
hence impossible to eliminate statically.12 None of our find-
ings involved a thrown exception.

Benchmarks 64.VirtualDispatch2 and 65.VirtualDispatch3
resulted in one FP each. In these two cases, a design pattern
is employed in which a method is invoked on an object using
a base type reference but the actual object is allocated and
returned via a separate call to an allocator method (e.g., Base
b = allocActual(); b.foo();. Due to the actual object
type flowing on the backward edge from the nested call, these
two cases would require inferring and propagating runtime
type information on both the forward and backward control-
flow edges which we currently do not support.

As for False Negatives, FIRMSCOPE missed 8.Parcel1
where a tainted string s is stored in an object O, O is seri-
alized to an Android parcel where O implemented a custom
logic that only serializes its O.s field, the parcel is deserial-
ized, one object O′ is read from it, then O′.s is sent over a
text message. FIRMSCOPE could not track the taint informa-
tion of O.s through the serialized parcel bytes to O′.s. We
argue that solutions cannot both detect this case yet maintain
field sensitivity since tainting O or the entire parcel instead
of specifically O.s and its bytes in the parcel (because of the
custom serialization logic implemented by O) will taint other
fields in O and the parcel, destroying field sensitivity.

Another controversial case is 57.StaticInitialization3 in
which an app has a taint source inside a static class initializer
block and the data leakage only manifests in case the JVM
happens to invoke the static initializer at a specific call site.

12An unchecked exception is an exception that does not need to be declared
in a method’s throws clause.

2394 29th USENIX Security Symposium USENIX Association

Both FlowDroid and FIRMSCOPE detected no leaks, while
Amandroid and DroidSafe detected it. We argue that detecting
this leakage is in fact problematic since an engine that can
detect this case will inherently trigger FPs on all sources
that may happen to reside in a static initializer code block,
irrespective of whether the initializer has actually executed at
a vulnerable call site (i.e., a leaking flow exists) or not. The
reason is that the calls to static initializers (called clinit
methods in Dalvik) are implicit, i.e., done by the runtime
according to the runtime Java language specifications [52]
and do not appear in the app’s bytecode. Therefore, it is
impossible for a static engine to correctly determine whether
a class is initialized and the order at which that initialization
had occurred to judge whether the leaking execution path
originating inside clinit would actually execute or not.

Finally, FIRMSCOPE missed 67.ActivityCommunication1,
72.ActivityCommunication7, 73.ActivityCommunication8,
74.ActivityCommunication9, and 83.UnresolvableIntent1, as
they involved contrived ICC situations that require elaborate
Intent target resolution and propagation on backward control-
flow edges which FIRMSCOPE did not perform.

Table C.2: DroidBench 2.0 benchmark details (100 Ps and 20 Ns).

App Name P FlowDroid Amandroid DroidSafe FIRMSCOPE
FP FN FP FN FP FN FP FN

1.Merge1 0 0 0 0 0 0 0 0 0
2.ApplicationModeling1 1 0 0 0 0 0 0 0 0
3.DirectLeak1 1 0 0 0 0 0 0 0 0
4.InactiveActivity 0 0 0 0 0 0 0 0 0
5.Library2 1 0 0 0 0 0 0 0 0
6.LogNoLeak 0 0 0 0 0 0 0 0 0
7.Obfuscation1 1 0 0 0 0 0 1 0 0
8.Parcel1 1 0 0 0 1 0 0 0 1
9.PrivateDataLeak3 1 0 1 0 1 0 0 0 0
10.PublicAPIField1 1 0 0 0 0 0 0 0 0
11.PublicAPIField2 2 0 1 0 0 0 0 0 0
12.ArrayAccess1 0 1 0 1 0 1 0 0 0
13.ArrayAccess2 0 1 0 1 0 1 0 1 0
14.ArrayCopy1 1 0 0 0 1 0 0 0 0
15.ArrayToString1 1 0 0 0 1 0 0 0 0
16.HashMapAccess1 0 1 0 1 0 1 0 1 0
17.ListAccess1 0 1 0 1 0 1 0 1 0
18.MultidimensiolArray1 1 0 0 0 0 0 0 0 0
19.AnonymousClass1 2 0 0 2 2 0 0 0 0
20.Button1 1 0 0 0 0 0 0 0 0
21.Button2 2 1 0 0 0 1 0 0 0
22.Button3 1 0 0 0 1 0 0 0 0
23.Button4 1 0 0 0 1 0 0 0 0
24.Button5 1 0 1 0 1 0 0 0 1
25.LocationLeak1 2 0 0 3 2 0 0 0 0
26.LocationLeak2 2 0 0 3 2 0 0 0 0
27.LocationLeak3 2 0 0 2 2 0 0 0 0
28.MethodOverride1 1 0 0 0 0 0 0 0 0
29.MultiHandlers1 2 0 0 4 0 0 0 0 0
30.Ordering1 0 0 0 3 0 2 0 0 0
31.RegisterGlobal1 1 0 0 0 1 0 0 0 0
32.RegisterGlobal2 1 0 0 0 1 0 0 0 0
33.Unregister1 0 1 0 1 0 1 0 1 0
34.ContentProvider1 2 0 0 0 0 0 0 0 0
35.IMEI1 0 0 0 0 0 0 0 0 0
36.PlayStore1 2 0 0 0 0 0 0 0 0
37.FieldSensitivity1 0 0 0 0 0 0 0 0 0
38.FieldSensitivity2 0 0 0 0 0 0 0 0 0

Table C.2, continued

App Name P FlowDroid Amandroid DroidSafe FIRMSCOPE
FP FN FP FN FP FN FP FN

39.FieldSensitivity3 1 0 0 0 0 0 0 0 0
40.FieldSensitivity4 0 0 0 0 0 1 0 0 0
41.InheritedObjects1 1 0 0 0 0 0 0 0 0
42.ObjectSensitivity1 0 0 0 0 0 0 0 0 0
43.ObjectSensitivity2 0 0 0 0 0 1 0 0 0
44.Clone1 1 0 0 0 0 0 0 0 0
45.Exceptions1 1 0 0 0 0 0 0 0 0
46.Exceptions2 1 0 0 0 0 0 0 0 0
47.Exceptions3 0 1 0 1 0 1 0 1 0
48.Exceptions4 1 0 0 0 1 0 0 0 0
49.FactoryMethods1 2 0 0 1 2 0 0 0 0
50.Loop1 1 0 0 0 0 0 0 0 0
51.Loop2 1 0 0 0 0 0 0 0 0
52.Serialization1 1 0 1 0 1 0 0 0 0
53.SourceCodeSpecific1 1 0 0 4 0 0 0 0 0
54.StartProcessWithSecret1 1 0 0 0 1 0 0 0 0
55.StaticInitialization1 1 0 1 0 0 0 0 0 0
56.StaticInitialization2 1 0 0 0 0 0 0 0 0
57.StaticInitialization3 1 0 1 0 0 0 0 0 1
58.StringFormatter1 1 0 1 0 1 0 0 0 1
59.StringPatternMatching1 1 0 0 0 0 0 0 0 0
60.StringToCharArray1 1 0 0 0 0 0 0 0 0
61.StringToOutputStream1 1 0 0 0 0 0 0 0 0
62.UnreachableCode 0 0 0 0 0 0 0 0 0
63.VirtualDispatch1 1 1 0 1 0 1 1 0 0
64.VirtualDispatch2 1 1 0 0 0 0 0 1 0
65.VirtualDispatch3 0 1 0 0 0 0 0 1 0
66.ActivityCommunication1 1 0 0 0 0 0 0 0 0
67.ActivityCommunication2 1 0 1 2 0 0 0 0 1
68.ActivityCommunication3 1 0 1 0 0 0 0 0 0
69.ActivityCommunication4 1 0 1 0 0 0 0 0 0
70.ActivityCommunication5 1 0 1 0 0 0 0 0 0
71.ActivityCommunication6 1 0 1 0 0 0 0 0 0
72.ActivityCommunication7 1 0 1 0 0 0 0 0 1
73.ActivityCommunication8 1 0 1 0 0 0 0 0 1
74.BroadcastTaintAndLeak1 1 0 1 1 0 0 1 0 1
75.ComponentNotInManifest1 0 0 0 0 0 0 0 0 0
76.EventOrdering1 1 0 1 0 1 0 0 0 0
77.IntentSink1 1 0 0 1 0 0 0 0 0
78.IntentSink2 1 0 0 1 0 1 0 0 0
79.IntentSource1 0 0 0 3 0 0 0 0 0
80.ServiceCommunication1 1 0 1 0 0 0 0 0 1
81.SharedPreferences1 1 0 1 0 1 0 0 0 0
82.Singletons1 1 0 0 0 1 0 0 0 0
83.UnresolvableIntent1 2 0 0 0 0 0 0 0 2
84.ActivityLifecycle1 1 0 0 0 0 0 0 0 0
85.ActivityLifecycle2 1 0 0 0 0 0 0 0 0
86.ActivityLifecycle3 1 0 0 0 0 0 0 0 0
87.ActivityLifecycle4 1 0 0 0 0 0 0 0 0
88.ActivitySavedState1 1 0 1 0 1 1 1 0 0
89.ApplicationLifecycle1 1 0 0 0 1 1 1 0 0
90.ApplicationLifecycle2 1 0 0 0 1 1 1 0 0
91.ApplicationLifecycle3 1 0 0 0 1 1 1 0 0
92.Asynch*EventOrdering1 1 0 0 0 0 1 1 0 0
93.BroadcastRec*Lifecycle1 1 0 1 0 0 0 0 0 0
94.BroadcastRec*Lifecycle2 1 0 1 0 1 0 0 0 0
95.EventOrdering1 1 0 0 0 0 0 0 0 0
96.FragmentLifecycle1 1 0 0 0 0 1 1 0 0
97.FragmentLifecycle2 1 0 1 0 1 1 0 0 0
98.ServiceLifecycle1 1 0 1 0 0 1 1 0 0
99.ServiceLifecycle2 1 0 0 0 0 1 0 0 0
100.SharedPref*Changed1 1 0 1 0 1 1 1 0 0
101.Reflection1 1 0 0 0 0 0 0 0 0
102.Reflection2 1 0 0 0 1 0 0 0 0
103.Reflection3 1 0 0 0 1 0 0 0 0
104.Reflection4 1 0 0 0 0 0 0 0 0
105.AsyncTask1 1 0 0 0 0 1 1 0 0
106.Executor1 1 0 0 0 0 1 1 0 0
107.JavaThread1 1 0 0 0 0 1 0 0 0
108.JavaThread2 1 0 0 0 0 1 1 0 0
109.Looper1 1 0 0 0 0 1 1 0 0
Total (lower is better) 10 24 20 30 28 15 7 11

USENIX Association 29th USENIX Security Symposium 2395

D More Vulnerability Case Studies

D.1 Unauthorized Settings Modification in
AOSP Settings App

Any software vulnerability introduced by Android vendor
code generally limits the scope of affected devices to those
manufactured by the vendor. On the other hand, a software
vulnerability that occurs in in AOSP code has a more severe
impact since the vulnerability is usually inherited by all ven-
dors, thus greatly enhancing the scope of affected devices.
FIRMSCOPE discovered a vulnerability in the AOSP Settings
app, with a package name of com.android.settings, in
certain versions of Android 9.0 that allows a local app to
toggle (enable/disable) the following options without the ap-
propriate access permissions: Wi-Fi, Wi-Fi calling, Bluetooth,
and Zen Mode. These capabilities allow an unprivileged app
to mediate access to protected resources and perform a local
Denial of Service (DoS) attack.

The Settings app serves as a critical nexus for modifying
the device settings. This vulnerability is caused by an unpro-
tected broadcast receiver named SliceBroadcastReceiver
in the Settings app. This component is exported by default
and is not protected by an access permission. When FIRM-
SCOPE discovered the vulnerability, it was already publicly
known and had been assigned CVE-2018-9525 [53] and A
-111330641 by Google with a severity rating of high [42].
Google remediated the vulnerability by not exporting the
SliceBroadcastReceiver app component, making it inac-
cessible to external apps [43].

D.2 Factory Resetting the Device
A “factory reset” operation will wipe the data and cache par-
titions. This removes any apps the user has installed and any
other user or app data that the user does not have synced ex-
ternally. An unintentional factory reset can present an incon-
venience to the user due to the potential for irrecoverable data
loss. Apps need the the protected MASTER_CLEAR permission
to be able to factory reset a device (a permission that can only
granted to pre-installed system apps). In this case study, we
use Essential Phone as an example to illustrate this vulnerabil-
ity. The vulnerability resides within a pre-installed app with a
package name of com.ts.android.hiddenmenu. This app
is a platform app and executes as the system user. Moreover,
the vulnerable interface exposed to other apps on the same
device is the activity app component RTNResetActivity.
An external app can create an explicit Intent that starts this
activity, and the activity will programmatically initiate an
immediate factory reset of the device.

D.3 Logcat Leakage in Code Aurora

Some firmware contained an app with a package name of
org.codeaurora.gps.gpslogsave that can be induced to
leak the Logcat logs to external storage. The package name
indicates that the app was developed for the Code Aurora
project, which is an association of companies developing open
source wireless communications projects for mobile devices.
The package name of an app is selected by the app developer
and can easily be “spoofed” to make it appear as though
the app was created by another organization. We inquired
directly with Code Aurora to see if one of their members was
responsible for its development, but they did not respond. In
our dataset, 18 different Xiaomi firmware contained this app
which was not present in any other vendor firmware.

Although the naming of the app and its components focus
on GPS, the app has no other ostensible relation to GPS. The
app captures the entire Logcat log and does not use a filter for
log tags that are related to the GPS subsystem. This app will
not be started by the system in response to common events
due to absence of their corresponding intent filters in its mani-
fest. Moreover, the app’s icon does not appear in the launcher,
so it is unlikely to be started by the user. Due to an exported
and accessible component, GPSLogKitReceiver, an exter-
nal app can initiate the logging of the system-wide Logcat
log to a location in the org.codeaurora.gps.gpslogsave
app’s private directory with a single intent. An external app
can send a different intent message which makes the org.
codeaurora.gps.gpslogsave app copy the log file from
internal storage to external storage, making it accessible to
any app with the READ_EXTERNAL_STORAGE permission.

Interestingly, FIRMSCOPE also detected a command
injection vulnerability stemming from a dataflow from an
app component entry, GPSLogKitReceiver.onReceive(
Context, Intent), to the Runtime.exec(String) API.
We manually investigated the data flow and confirmed that
the flow is indeed valid. An external app can provide a string
in an intent which the org.codeaurora.gps.gpslogsave
app will encrypt, insert, and execute as a command with the
format: “/system/bin/sh -c echo enc(<timestamp
> - <attacker controlled string>)>> /persist/
gps/gps-strength” where the enc(x) is encryption of
the string with a static key and Initialization Vector (IV)
using Advanced Encryption Standard (AES). Since the sh
command is used in batch mode, the attacker can perform
multiple command injections, although it is challenging to
exploit because the dynamic timestamp adds to the variability
of the ciphertext.

2396 29th USENIX Security Symposium USENIX Association

	Introduction
	Background and Threat Model
	Challenges and Key Insights
	Detailed Design
	Preprocessing
	Unpacking Firmware Images
	Extracting and Disassembling Apps

	Static Taint Analysis
	Building Inter-Procedural CFGs
	Building Inter-Procedural DFGs
	Custom Taint Analysis

	Evaluation
	Dataset and Experiment Setup
	Privilege Escalation Vulnerabilities
	Benchmarking FirmScope Performance
	Runtime Performance

	Discussion and Future Work
	Related Work
	Conclusion and Final Remarks
	Android Firmware Acquisition
	Sample Detection Rules
	Sample Command Execution Rules
	Sample Factory Reset Detection Rules

	Benchmarking Details and Discussion
	More Vulnerability Case Studies
	Unauthorized Settings Modification in AOSP Settings App
	Factory Resetting the Device
	Logcat Leakage in Code Aurora

