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Abstract. In the Android apps ecosystem, third-party libraries play a
crucial role in providing common services and features. However, these
libraries introduce complex dependencies that can impact stability, per-
formance, and security. Therefore, detecting libraries used in Android
apps is critical for understanding functionality, compliance, and security
risks. Existing library identification approaches face challenges when ob-
fuscation is applied to apps, leading to performance degradation. In this
study, we propose Libra, a novel solution for library identification in
obfuscated Android apps. Libra leverages method headers and bodies,
encodes instructions compactly, and employs piecewise fuzzy hashing for
effective detection of libraries in obfuscated apps. Our two-phase ap-
proach achieves high F1 scores of 88% for non-obfuscated and 50− 87%
for obfuscated apps, surpassing previous works by significant margins.
Extensive evaluations demonstrate Libra’s effectiveness and robustness
against various obfuscation techniques.
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1 Introduction

With three billion active devices, Android has become the dominant mobile
platform with over three and a half million apps on the Google Play Store
alone [10, 11]. These apps cater to the needs of billions of users in an ever-
evolving landscape. To accelerate development and enhance user experience,
apps often incorporate various third-party libraries to leverage their prebuilt
functionalities [35,44]. While these third-party libraries offer considerable devel-
opment advantages, they introduce complex dependencies into the apps that can
significantly impact stability, performance, and security.

Detecting libraries used in Android apps has become a critical pursuit for
developers, security analysts, and researchers alike [28]. Identifying the libraries

⋆ This work was done as part of an internship at Quokka.
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that make up an app allows for a deeper understanding of the app’s functional-
ity, licensing compliance, and potential security risks. Moreover, tracking these
dependencies aids in the timely integration of updates, ensuring the apps stay
current with the latest feature enhancements and security patches.3

Various library identification approaches were introduced in the recent years,
including clustering techniques [24,26,29,42], learning-based techniques [25,27],
and similarity-based techniques [15,19–21,31,34,36,37,41,43]. A variety of differ-
ent app and library features are used by these approaches, ranging from package
and class hierarchies to GUI resources and layout files. These techniques operate
with the same end goal, that is to identify the libraries (names and versions)
used by an app given the app published binary package.

Most of these tools have been developed with obfuscation in mind and se-
lect features that have resiliency to obfuscation techniques. Yet, it has been
shown [38, 39, 42] that when obfuscation is applied to apps the performance of
the state-of-the-art tools degrades significantly. Obfuscation is not a new reality
for software and has been used to hide malicious software such as the Solar-
Winds attack [8] where the attackers used multiple obfuscation layers to hide
the malicious software from detection. This exemplifies the need for identification
techniques with increased resilience to the various obfuscation techniques that
can be applied to Android apps, including identifier renaming, code shrinking
and removal, control-flow randomization, package flattening, among others.

To this end, we propose Libra in this study as a novel solution to identify
library names and versions in an Android app package with higher resilience
to obfuscation than the state of the art. By examining the current state-of-the-
art techniques, we shed light on some of the overlooked challenges that arise
when analyzing obfuscated apps and discuss how Libra tackles these challenges
to achieve higher detection power than the state of the art.

Libra is designed around three novel ideas: (1) leveraging both method head-
ers and bodies to enhance robustness to obfuscation, (2) encoding method in-
structions into a compact representation to mitigate learning bias of instruction
sequences, and (3) employing piecewise fuzzy hashing for effective adaptation to
changes introduced by obfuscators. Libra employs a two-phase approach for li-
brary identification. In the learning phase, it extracts packages, encodes methods,
and generates signatures. In the detection phase, it extracts library candidates,
follows the same procedure in learning for method encoding and signature gen-
eration, pairs library candidates and actual libraries to shrink the search space,
then applies a two-component weighted similarity computation to arrive at a
final similarity score between a library candidate and a library.

We performed an extensive evaluation using multiple state-of-the-art Android
library identification tools on various obfuscated benchmarks. For each tool we
look at its capabilities and its resilience to different obfuscation techniques and
highlight how it compares to Libra. Our experiments reveal that Libra achieves

3 The process of identifying components used in a software is generally known as
creating a Software Bill of Materials (SBOM). See https://www.cisa.gov/sbom for
more information about the SBOM concept and standards.

https://www.cisa.gov/sbom
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a high F1 score of 88% for non-obfuscated apps, surpassing prior works by a
margin ranging from 7% to 540%. For obfuscated apps, Libra achieves F1 scores
ranging from 50% to 87%, achieving a substantial improvement over previous
approaches from 7% and up to 1386% in certain cases.

To summarize, the contributions of this work are:

– We introduce Libra, a novel approach to library identification using fuzzy
method signatures of hashed instructions.

– We provide a characterization of the state-of-the-art tools and highlight chal-
lenges unique to identifying libraries in obfuscated apps.

– We demonstrate the effectiveness of Libra by extensively evaluating it against
recent Android library identification tools on multiple datasets with various
degrees of obfuscation.

2 Background

2.1 Android Third Party Libraries

An Android app is packaged into an Android Package file (APK) which contains
the app’s Dalvik Executable (DEX) bytecode files, resource files, and assets.
The bytecode is organized into package hierarchies, e.g. com/example, where each
package in the hierarchy may contain one or more implementation units (a class
file) and other subpackages. The APK contains both the app’s own bytecode
as well as the bytecode for all the third-party libraries (and their transitive
dependencies) on which the app depends.

Several recent studies have shown that almost all Android apps use third-
party libraries [9, 35, 39, 44]. These libraries are used to leverage existing func-
tionalities and enable various services, such as advertisements, maps, and social
networks [35,44]. However, despite the widespread usage of libraries in Android
apps, concerns have been raised about the security impact of depending on
third-party libraries. Multiple studies revealed that apps often use outdated li-
braries [14,16,35,44]. A recent study [9] of apps on Google Play has shown that
98% used libraries, with an average of 20 libraries per app. Alarmingly, nearly
half of the apps used a library that suffered from a high-risk vulnerability.

These vulnerable libraries pose significant challenges for developers and end
users. The scope of a vulnerability in a library does not only impact the library,
but also extends to its dependencies and other apps and libraries depending on
it. Therefore, it is paramount that libraries packaged with an app are identified in
order to allow for quick remediation and confinement of potential vulnerabilities.

2.2 Library Detection and Obfuscated Apps

Android app developers use obfuscation techniques to mask the structure, data,
and resources of their apps to hinder reverse engineering attempts. Bad actors
also use obfuscation to hide malicious code. Obfuscation typically takes place
during the build or post-build processes where the obfuscators operate on the
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bytecode in an APK. Given an obfuscated app APK, the line between what
bytecode is app code vs. library code is often blurred due to the various trans-
formations that occur during the obfuscation process.

Android obfuscators such as ProGuard [6], DashO [2], and Allatori [1] are
among the most popular and studied obfuscators in the literature. Several stud-
ies [15,28,33] have analyzed the configurations of these obfuscators and summa-
rized their distinct obfuscation techniques. Pertinent to this study are techniques
that apply transformations to the bytecode of an app, such as identifier renam-
ing (transforming package/class/method names into random non-meaningful
strings), code addition (adding redundant or bloating code to increase analysis
cost), code removal (eliminating unused classes and methods while retaining the
functionality of the app), package flattening/repackaging (consolidating multiple
packages into one), control flow randomization (shuffling the app’s basic blocks
while maintaining functionality), among others. Some of these techniques overlap
and may be categorized as optimization or code shrinking techniques.

To detect libraries integrated in an app APK, researchers have gone through
a number of techniques. Initial efforts to library detection involved utilizing a
whitelist of common library package names [29]. However, whitelisting disallows
the identification of library versions and does not perform well when obfuscation
techniques such as package renaming are applied, leading to low precision and
recall. This has led to the development of other detection techniques, such as
clustering and similarity comparisons. Clustering techniques [24,26,32,42] pack
app packages and library packages together and use a threshold for the cluster
size to determine if a cluster of packages can be identified as a library. Clus-
tering can be an exhaustive process, especially given the overwhelming number
of library artifacts on the market.4 To strike a better balance between perfor-
mance and detection power, techniques based on similarity comparisons were
introduced [15, 38] where they identify and compare certain features of library
candidates from an app against a prebuilt library features database. Libra falls
under this category. We discuss related work in more depth in §7.

3 Overview and Key Challenges

3.1 Motiviating Example

By examining the state-of-the-art techniques, we observed that obfuscators that
perform code shrinking are particularly difficult to handle. Code shrinking re-
moves unused classes, fields, methods, and instructions that do not have an
impact on the functionality of an app. This shrinks the size of libraries in the
app and leaves less bytecode to operate on to calculate similarity.

We encountered an instance of this with a library called com.github.gabriele
-mariotti.changeloglib:changelog:2.1.0 within the SensorsSandbox app [13]. A
comparison of the package structures between the unobfuscated and obfuscated
4 At the time of this writing, the Maven Central repository [5] had over 11 million

indexed library packages.
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android
com
it
└── gmariotti
    └── changelibs
        └── library
            ├── internal
            │   ├── 10 classes
            ├── parser
            │   ├── 3 classes
            └── view
                └── 4 classes

(a) Before code shrinking.

android
com
it
└── gmariotti
    └── changelibs
        └── library
            ├── internal
            │   ├── 7 classes
            ├── parser
            │   ├── 3 classes
            └── view
                └── 2 classes

(b) After code shrinking.

Fig. 1. Library package structure for the SensorsSandbox app without (left) and with
code shrinking (right). The removal of a few classes causes the library to be missed by
all prior solutions examined in this work.

versions of the library is depicted in Fig. 1. Three classes from the library’s
internal subpackage and two classes from the view subpackage were removed due
to code shrinkage during compilation process. Overall, code shrinking resulted
in a decrease of 36.9% in the number of instructions within the library.

Despite the small size of the app, the fact it had only this third-party library
dependency, and the low degree of shrinking, all recent tools failed at identifying
the library in the app APK when code shrinking was applied. Specifically, Lib-
Scout [15], ATVHunter [37], and Libloom [21], were able to detect the library
without code shrinking, but not once it was applied, despite being obfuscation
aware. On the other hand, LibScout [15], ATVHunter [37], Orlis [34], and others,
do not have any mechanism to account for this common obfuscation.

Code shrinking is one example of the challenges encountered when identifying
libraries in obfuscated apps. In the following, we highlight multiple key challenges
to library identification in obfuscated apps and how Libra tackles them.

3.2 Challenges to Library Identification

C1: Multiple Root Packages. In some cases, a library may have multiple
root packages, e.g., com/foo and com/bar, which presents a challenge for library
identification techniques since they need to be able to accurately associate both
packages with the same library. However, if there are no interactions between
these packages, traditional approaches using method calls, inheritance, and field
access/writes to create class and library relations may struggle.

To address this, Libra identifies all root packages in a library by looking
for first-level code units, and ensuring that a root package subsumes all its sub
packages. This is done with a bottom-up approach to ensure the root package has
first-level code units. This allows Libra to independently evaluate each package
in an app against all root packages of a library to accurately identify the library.
This also allows Libra to effectively manage transitive dependencies by treating
them as multiple root packages.
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C2: Shared Root Packages. Libraries may have a common root package,
either intentionally or due to obfuscation techniques such as package flattening.
This causes an enlarged pool of classes, making it difficult to distinguish between
the libraries under this shared root package as their classes in the APK, despite
being under the same root package, belong to different libraries.

In order to address this challenge, Libra introduces a two-component sim-
ilarity measure where the first component represents the number of matched
methods within the library candidate in the app, and the second component
represents the number of matched methods in the actual library. When mul-
tiple libraries are present under the same root package, the library-candidate
component naturally yields a lower value. Conversely, the library ratio compo-
nent remains unaffected by the number of libraries within the library candidate.
Incorporating these two components together allows Libra to accurately detect
libraries sharing a root package as the similarity measure adjusts per each can-
didate under the shared root package.

C3: Code Shrinking. A standard step in the building of an app APK is
Code Shrinking, where the compiler or obfuscator removes code deemed not
required at runtime, such as unused classes, fields, methods, and instructions,
from the app [12]. This process permanently removes code artifacts from the
app, potentially diminishing the identity of a library in an irreversible manner.
Tools have made the observation that a substantial difference (e.g., three times
or more) in the size of a candidate library in an APK and an actual library
package indicates that they are likely different libraries [37,40]. As shown in §3.1,
this causes problems for library identification as the overall similarity between
a shrunk library bytecode in an app APK and its corresponding actual library
package decreases significantly.

To address this, Libra utilizes a resilient two-component weighted similarity
calculation. By incorporating weights, Libra effectively addresses the impact of
missing methods, reducing its influence on the overall similarity score. Specifi-
cally, by assigning less weight to the in-app ratio, Libra maintains its effectiveness
in scenarios involving Code Shrinking.

C4: Instruction Bias. The Dalvik bytecode Instruction Set encompasses a
wide range of instructions, which may initially appear beneficial for improving
discrimination power when used for learning the identity of a library. However, in
reality, this complexity presents a challenge as app compilation and obfuscation
can introduce alterations to the bytecode, resulting in discrepancies compared
to the libraries’ bytecode used to build the models. These alterations include in-
struction reordering, arithmetic operation splitting, condition flipping, call res-
olution changes, and more. If a detection approach learns too much about the
instructions, it becomes overly sensitive to obfuscation techniques that modify
instructions and opcodes. Conversely, learning too little about the instructions
leads to a loss of precision, causing different methods to appear too similar.
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Fig. 2. Workflow of Libra with an offline learning phase and an online detection phase.

To overcome this, Libra encodes the instructions into a compact representa-
tion by mapping multiple opcodes to the same symbol. Moreover, it solely focuses
on the mnemonic of the instructions, disregarding the operands as they are often
subject to change by obfuscators. This approach enables Libra to strike a good
balance between overlearning and underlearning the instructions, providing a
more effective detection capability.

4 Detailed Design of Libra

Fig. 2 shows the workflow of Libra. We formulate the problem of Android third-
party library identification as a pair-wise similarity problem. The problem takes
in a set of library artifacts (JAR or AAR files) and an input app (APK file) where
both consist of a set of classes which need to be compared with particular data
and a similarity operator. Libra uses a two phase approach: An offline learning
phase in which it builds a database of library signatures by processing the library
artifacts and extracting pertinent information; and an online detection phase in
which it identifies library candidates in an app, extracts their signatures and
performs a pair-wise similarity computation with the offline database to identify
the names and versions of the library candidates used in the app.

4.1 Learning Library Identities

In the learning phase, Libra first takes in an input library file, disassembles it,
then extracts the root package name(s) of the library and groups the associated
classes for signature extraction. Libra processes the classes under each identified
package and computes a signature composed of a header and a body for each
method defined in a class. Finally, it stores the library metadata (e.g., name,
version) and signature into a database for later retrieval during the online detec-
tion phase. The following learning phases of Libra will be elucidated: (1) Root
Package Extraction and (2) Signature Extraction.

Root Package Extraction. Libra traverses the package hierarchy of the library
in breadth-first order looking for the first non-empty package, i.e., a root package
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com.google.firebase
├── iid
│   └── FirebaseInstanceIdReceiver
└── messaging
    ├── FirebaseMessaging
    ├── ...
    └── reporting
        ├── ...
        └── MessagingClientEvent

(a) Package structure for the library com.google.firebase:
firebase-messaging:23.0.0.

com.google.firebase.iid
└── FirebaseInstanceIdReceiver

(b) Root packages extracted and flattened for package iid .

com.google.firebase.messaging
├── ...
├── FirebaseMessaging
└── MessagingClientEvent

(c) Root packages extracted and flattened for package messaging.

Fig. 3. An example of a library having multiple root packages and the resulting root
packages extracted along with the classes.

that contains at least one class definition. Note that there may be multiple
packages associated with a single library if there are more than one package
containing code units at the same level in the hierarchy. This allows Libra to
handle the case of multiple root packages (C1). An example of this is shown in
Fig. 3. Each package has the associated classes grouped with it for signature
extraction. The extracted root package is flattened where each class under the
package, including in subpackages, become associated with the root package.

Method Encoding. For each method in a class group, Libra encodes the
Smali disassembly of the method body into a compact representation by map-
ping multiple instruction opcodes to the same symbol and discarding instruction
operands. Figures 4a and 4b show a sample method and its encoded body. The
full encoding map between is shown in Table A.1. This encoding step allows Li-
bra to avoid instruction bias during learning (C4) by creating a lower-resolution
method body (counters overlearning) without destroying the information con-
tained in the instructions order (counters underlearning).

Signature Generation. For each method in a class group, Libra extracts the
method’s parameter types, return type, and encoded body.5 With these data
5 We exclude the instance initializer method (<init>), the class initializer method (<
clinit>), and the resources class (R) since these tend to be highly similar amongst
apps and libraries which may lead to spurious matches.
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.method newRealCall(Lokhttp3/OkHttpClient;Lokhttp3/Request;Z)Lokhttp3/RealCall;
    .locals 2
    .param p0, "client"    # Lokhttp3/OkHttpClient;
    .param p1, "originalRequest"    # Lokhttp3/Request;
    .param p2, "forWebSocket"    # Z
    new-instance v0, Lokhttp3/RealCall;
    invoke-direct {v0, p0, p1, p2}, 
Lokhttp3/RealCall;-><init>(Lokhttp3/OkHttpClient;Lokhttp3/Request;Z)V
    ...
    return-object v0
.end method

(a) Bytecode method in Smali.

header: (Lokhttp3/OkHttpClient;Lokhttp3/Request;Z)Lokhttp3/RealCall
body: call move call ... return 

(b) Encoded method.

header: (XXZ)X
body: 3:yaGRLBMTdLBMTdLBMTdGEMGgCdGEMGgdMIKTyV:yaI6TJ6TJ6TBHgCBHgdJKTyV

(c) Signature with header and body.

Fig. 4. Encoding and signature generation process. The signature header has the
method parameter and return types where non-primitives changed to X. The body
has the computed fuzzy hash of method mnemonics.

points Libra constructs a fuzzy signature which includes a header and a body as
explained in the following.

To compute the signature header, Libra constructs a fuzzy method descriptor
using the following transformation: The types are kept if they are primitives in
Java, such as int, boolean, but are changed to X if they are non-primitive, such
as java.lang.Object, java.lang.String (C4). Masking the types is essential in
cases where identifier renaming obfuscation has been applied. If non-primitive
types were utilized, and renaming has occurred, a mismatch would arise between
the signature headers of the method signatures being compared (C4). For exam-
ple, if the parameter types okhttp3/OkHttpClient, okhttp3/Request, and okhttp
/RealCall, from Fig. 4, were used for the signature header instead of replacing
each with X, and identifier renaming was applied renaming them to A, B, and C,
respectively, the two signature headers, (okhttp3/OkHttpClientokhttp3/RequestZ
)okhttp3/RealCall and (ABZ)C, would then never match.

To compute the signature body, Libra applies context-triggered piecewise
hashing (CTPH) [22] on the encoded opcodes sequence, producing a hash in the
format shown in Fig. 4c.6 The first part of the hash is the size of the rolling

6 CTPH offers advantages over other hashing methods in this setup as it employs a
recursive rolling hash where each piece of the hash is computed based on parts of the
data and is not influenced by previously processed data. Consequently, if there are
changes to the sequences being hashed, only a small portion of the hash is affected.
This is a desirable property for library identification in obfuscated apps since changes
to the library bytecode packed in the app are expected.
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window used to calculate each piece of the hash, the second part is a hash
computed with the chunk size, and the third part is the hash with the chunk
size doubled. This approach enhances the ability to handle both coarse- and
fine-grained changes within a sequence due to obfuscation (C4).

Finally, and due to the nature of offline learning, it is necessary to store the
results for lookup during the online detection phase. Libra stores each library
identity (name and version), root package names, fuzzy signature (header and
body), and metadata associated with the library in a database.

4.2 Detection and Similarity Computation

In the online detection phase, Libra identifies the library names and versions
used by an incoming Android app (typically an APK file). The detection phase
consists of the following stages: (1) Library Candidate Extraction, (2) Signature
Extraction, (3) Library Pairing, (4) Similarity Computation. Each stage depends
on the previous as pertinent information and data is extracted and propagated.

Library Candidate Extraction. Similar to the root package extraction step
in the learning phase, Libra traverses the package hierarchy of the app and
identifies all the app root packages. It then parses the AndroidManifest.xml file
of the app and identifies the main components and their packages, and discards
root packages that belong to the app main components since these belong the
app’s own code and therefore not libraries. It then considers each of the remaining
root packages a library candidate and groups its classes in the same manner as
in the learning phase for usage by the subsequent stages of the analysis.

Method Encoding & Signature Generation. For each library candidate,
Libra encodes methods and constructs their signatures following the same ap-
proach in §4.1.

Library Pairing. To reduce detection time complexity, Libra attempts to avoid
unnecessary similarity comparisons by first trying to pair each library candidate
with libraries learned in the offline phase grouped by name, i.e., a group of differ-
ent versions of the same library. Libra pairs a library candidate with a member
of a library group if both of the following conditions are met: (1) The library
candidate package name matches with one or more of the root package names of
the library in the database. (2) The difference between the number of classes of
the library candidate and the library in question is less than a predefined thresh-
old τ (defaults to 0.4). A formulation of the reduction in search space is provided
in Appendix B. The first condition states that Libra is aware of the root package
linked with the library candidate and exclusively compares it with other libraries
that have the same package association. The second condition originates from
a heuristic, suggesting that a substantial discrepancy in the number of classes
between the library candidate and another library indicates a lower probability
of them being the same [37,40].
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Similarity Compuation. For each library candidate C and learned library L
pair ⟨C,L⟩, Libra computes a pair-wise similarity score between the methods
MC of the library candidate and the methods ML of the learned library by, first,
computing the set M of pair-wise mutually-similar methods:

M = {⟨mC ,mL⟩ | mC ∈ MC ,mL ∈ ML,

S(mC) = S(mL), ∆(H(mC), H(mL)) ≤ δ}
(1)

where S is the fuzzy method signature function, H is the fuzzy method hash
function, ∆ is the Levenshtein distance [23] which represents how similar the
two method hashes are to each other, and δ is a predefined threshold (defaults
to 0.85). The threshold δ is used to handle changes in the method instructions
due to obfuscation (C3, C4) and was chosen from prior work [37].

Given M , Libra computes the final similarity score as the weighted sum of
the ratios of matched methods in the library and the app, given by:

sim(C,L) = α · min(|ML|, |M |)
|ML|

+ β · min(|MC |, |M |)
|MC |

(2)

where α, β are weighting parameters such that α + β = 1. The similarity score
ranges from 0 (lowest) to 1.0 (highest).

The purpose of these weighting parameters is to adapt to different degrees of
code shrinkage by dampening the impact of code removal on the overall similarity
score. In our experiments, we observed that α and β values of 0.8 and 0.2,
respectively, yielded satisfactory overall results when code shrinking has been
applied (C3), or there exists a shared root package between libraries (C2). The
latter scenario arises when multiple libraries are associated with the same root
package, potentially resulting in a low match ratio for the library candidate.
However, through appropriate weighting, this challenge is overcome, enabling
the determination that the library candidate and library are indeed similar.

Finally, Libra ranks the results based on the final similarity score, serving as
a confidence indicator for the likelihood of the library’s presence in the app, and
reports the top k matches (defaults to 1).

5 Evaluation

We implemented Libra in Python in 2.4k SLOC. For fuzzy hashing, Libra relies
on ssdeep [22]. Our experiments were conducted on an Ubuntu 20.04 server with
Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20 GHz and 252 GiB of RAM.

We conducted several experiments to determine the effectiveness of Libra
against state-of-the-art tools, including LibScout [15], LibPecker [43], Orlis [34],
LibID-S [41], and Libloom [21].7

7 Note that the Android SDK Support Library [7] was excluded from the counts for
consistency with all evaluated tools.
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We used the default settings for all the tools. For LibID [41], we used the
LibID-S variant since it performs the best [41] and set a 0.8 threshold for Lib-
Scout to maintain consistency with LibID.

We used two public benchmarks in our experiments: the ATVHunter [37] and
Orlis [4, 34] datasets. These two datasets were selected due to their widespread
usage by prior work and their inclusion of diverse obfuscation techniques. The
ATVHunter dataset consists of 88 non-obfuscated apps, and three sets of 88 (3
x 88) apps obfuscated with control flow randomization, package flattening and
renaming, and code shrinking using Dasho [2]. In contrast, the Orlis dataset is or-
ganized based on the obfuscator used, encompassing the obfuscation techniques
used in the ATVHunter dataset along with string encryption. The dataset con-
sists of 162 non-obfuscated apps, and three sets of 162 (3 x 162) apps obfuscated
with the obfuscators Allatori [1], Dasho [2], and Proguard [6].

For each experiment, we measured Precision, Recall, and F1 score for detec-
tion effectiveness, and the average detection time for the runtime overhead. The
identify of a library in all experiments consists of both a name and a version
number. A true positive (TP) is identified when a tool reports a library and the
app contains that library. A false positive (FP) is identified when a tool reports
some library that is not contained in the app. A false negative (FN) is counted
when a tool does not report a library even though it is contained in the app.

5.1 Effectiveness Results

Table 1 shows detection results on the non-obfuscated ATVHunter dataset. The
effectiveness of Libra is evident where it successfully identifies all non-obfuscated
libraries contained in the apps. Here, Libra outperforms prior studies achieving
an overall 88% F1 score, showcasing an improvement from prior work ranging
from 7% up to 484%. Other tools show lower precision values resulting from
higher numbers of falsely identified libraries.

With obfuscation enabled, Libra’s TP rate consistently outperforms all prior
work with its recall ranging from 43% to 90% across all techniques. Table 2 shows
Libra and Libloom both displaying effectiveness against control flow randomiza-
tion with low FNs for the two, while others prove unsuccessful. Interestingly,
Libloom scores a higher F1 score with this technique. This is due to Libloom
discarding the order of instructions within a method, making it more resilient
to techniques that also disrupt instructions order, at a cost of reduced precision
as more methods appear similar (C4). Nevertheless, Libra still outperforms it
across all the remaining obfuscation techniques.

With package flattening in Table 3, there is a general decrease in detection
power for all tools as most utilize package hierarchy structures as features how-
ever, Libra maintains the best TP rate while achieving an F1 score performance
increase from 67% up to 1386% across all tools. Libra’s robust weighted sim-
ilarity calculation proves resilient against code shrinking in Table 4, correctly
identifying 90% of libraries, and outperforming the remaining tools in F1 score
by a range of 24% to 755%.
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Table 1. Detection results on ATVHunter non-obfuscated apps.

Tool TP FP FN Precision Recall F1 score
LibScout 57 84 1 0.4043 0.9828 0.5729
LibPecker 50 43 8 0.5341 0.8621 0.6596
Orlis 5 3 53 0.5889 0.0862 0.1504
LibID-S 57 112 1 0.3373 0.9828 0.5022
Libloom 58 25 0 0.6988 1.0000 0.8227
Libra 58 16 0 0.7838 1.0000 0.8788

Table 2. Detection results on ATVHunter control-flow-randomization-obfuscated apps.

Tool TP FP FN Precision Recall F1 score
LibScout 5 0 53 1.0000 0.0862 0.1587
LibPecker 23 15 35 0.6012 0.3966 0.4779
Orlis 5 4 53 0.5484 0.0862 0.1490
LibID-S 0 12 58 0.0000 0.0000 -
Libloom 58 25 0 0.6988 1.0000 0.8227
Libra 48 40 10 0.5455 0.8276 0.6575

Table 3. Detection results on ATVHunter pkg-flattening-obfuscated apps.

Tool TP FP FN Precision Recall F1 score
LibScout 0 0 58 - 0.0000 -
LibPecker 2 1 56 0.5740 0.0345 0.0651
Orlis 5 3 53 0.5889 0.0862 0.1504
LibID-S 1 1 57 0.5000 0.0172 0.0333
Libloom 12 11 46 0.5217 0.2069 0.2963
Libra 25 18 33 0.5814 0.4310 0.4950

Table 4. Detection results on ATVHunter code-shrinking-obfuscated apps.

Tool TP FP FN Precision Recall F1 score
LibScout 0 1 58 0.0000 0.0000 -
LibPecker 3 2 55 0.5735 0.0517 0.0949
Orlis 4 2 54 0.5904 0.0690 0.1235
LibID-S 3 11 55 0.2143 0.0517 0.0833
Libloom 33 24 25 0.5789 0.5690 0.5739
Libra 52 36 6 0.5909 0.8966 0.7123

With the non-obfuscated Orlis dataset in Table 5, Libra outperforms all
compared tools by 11% to 540%, maintaining the same F1 score observed in the
previous section and retaining the highest precision. This trend persists across
all obfuscated apps, where Libra consistently achieves the highest F1 score.

Tables 6 and 7 show detection results for apps obfuscated by Allatori and
Dasho. Overall, even though the results show a decline in F1 score performances
by all tools, Libra demonstrates the most resilience towards these techniques
with an improvement ranging from 7% to 605% and 15% to 455% for the F1
score on Allatori and Dasho-obfucated apps respectively. Libra correctly iden-
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Table 5. Detection results on Orlis non-obfuscated apps.

Tool TP FP FN Precision Recall F1 score
LibScout 102 144 1 0.4146 0.9903 0.5845
LibPecker 99 87 4 0.5309 0.9612 0.6840
Orlis 8 5 95 0.6116 0.0777 0.1378
LibID-S 101 216 2 0.3186 0.9806 0.4810
Libloom 103 53 0 0.6603 1.0000 0.7954
Libra 101 25 2 0.8016 0.9806 0.8821

Table 6. Detection results on Orlis Allatori-obfuscated apps.

Tool TP FP FN Precision Recall F1 score
LibScout 7 0 96 1.0000 0.0680 0.1273
LibPecker 71 40 32 0.6357 0.6893 0.6614
Orlis 6 3 97 0.6169 0.0583 0.1065
LibID-S 72 166 31 0.3025 0.6990 0.4223
Libloom 89 61 14 0.5933 0.8641 0.7036
Libra 92 50 11 0.6479 0.8932 0.7510

Table 7. Detection results on Orlis Dasho-obfuscated apps.

Tool TP FP FN Precision Recall F1 score
LibScout 37 52 66 0.4157 0.3592 0.3854
LibPecker 6 11 97 0.3481 0.0583 0.0998
Orlis 8 11 95 0.4039 0.0777 0.1303
LibID-S 37 97 66 0.2761 0.3592 0.3122
Libloom 96 201 7 0.3232 0.9320 0.4800
Libra 51 30 52 0.6296 0.4951 0.5543

Table 8. Detection results on Orlis Proguard-obfuscated apps.

Tool TP FP FN Precision Recall F1 score
LibScout 102 144 1 0.4146 0.9903 0.5845
LibPecker 99 87 4 0.5309 0.9612 0.6840
Orlis 8 5 95 0.6116 0.0777 0.1378
LibID-S 101 216 2 0.3186 0.9806 0.4810
Libloom 103 53 0 0.6603 1.0000 0.7954
Libra 101 27 2 0.7891 0.9806 0.8745

tifies the most libraries with the apps obfuscated by Allatori, and achieves the
highest precision against both obfuscators. In contrast, the detection rates of Lib-
Scout, LibPecker, and LibID-S decline due to the effects of package flattening
and control flow randomization on their package hierarchy structure features.

Finally, for Proguard in Table 8 where only identifier renaming and package
flattening are enabled, the metrics across all tools remain unchanged from the
non-obfuscated results. The results show that Libra outperforms other tools by
10% to 535%, displaying its resilience to the techniques applied by Proguard.
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Table 9. Average runtime of all experiments.

Tools Library Learning App Learning Library Detection
(seconds per library) (seconds per app) (seconds per app)

LibScout 1.66 - 5.04
LibPecker - - 509.40
Orlis 5.18 - 850.30
LibID-S 0.23 2.07 0.60
Libloom 0.25 0.42 1.26
Libra 4.39 - 9.20

Overall, the results demonstrate Libra’s greater detection effectiveness than
the state of the art, surpassing prior works by a margin ranging from 7% to
540% for non-obfuscated apps, and from 7% and to 1,386% for obfuscated ones.

5.2 Runtime Overhead

Table 9 shows the aggregate average learning and detection time per library
and app for experimented tools. Time is divided into Library Learning, App
Learning, and Library Detection, as tools perform different operations. Libra
exhibits slightly longer learning and detection times (4.39 s learning per library,
9.20 s detection per app) than three of the five tools, although still within the
same order of a few seconds. This is partially attributed to its relatively costly
method-level granularity for computing fuzzy hashes. LibScout’s fuzzy hashing
similarly contributed to a higher detection time. LibPecker and Orlis were the
least efficient, with longer runtimes due to class matching and code analysis.
Both LibID-S and Libloom demonstrated fast learning and detection, although
this comes at the expense of precision.

Overall, the performance of Libra meets the practical requirements and ex-
pectations for its intended use.

6 Discussion and Limitations

6.1 Threats to Validity

The obfuscation techniques used to evaluate the effectiveness of Libra and the
state of the art were chosen from readily available, established benchmarks in the
field. There may exist other obfuscation techniques in the literature that are not
captured by these obfuscators. The used obfuscation tools are what developers
commercially use for their apps which gives an accurate representation of how
the different detection tools perform on apps in the wild.

The default values for the thresholds in §4 were chosen to offer good trade-offs
for library detection in general cases out of the box. However, these thresholds
may prove to be too high when dealing with specific obfuscation techniques
that involve the insertion or removal of significant amount of code. To address
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this, the thresholds could be parameterized based on the detection of certain
obfuscation techniques, allowing for better adaptability and accuracy in different
scenarios. Parameter tuning against different obfuscation techniques could also
be performed to further refine the thresholds and the detection power of Libra.

6.2 Performance Optimization

Certain aspects of the approach and its implementation can be optimized to
achieve higher runtime performance. First, libraries can be processed in parallel
during the learning process to cut down on the overall effective learning time.
Second, early cutoffs can be employed during the detection phase if it is unlikely
that the number of matched methods would exceed what is need to produce a
high-enough final similarity score. This can be a check that is calculated on-
the-fly while comparisons are being made. Finally, the comparisons performed
during the library pairing step are all independent and can be parallelized to
reduce the overall detection time per app.

6.3 Native Libraries

Libra currently only supports identifying bytecode libraries within Android apps.
Apps could also utilize native libraries, written in C/C++, via the Java Native
Interface (JNI) [3]. Identifying (obfuscated) native libraries in an app comes with
its own challenges that extend beyond the scope of this work [14,17,30]. As such,
we defer the identification of native libraries to future work.

7 Related Work

Prior studies on bytecode library identification have explored diverse approaches
with varying degrees of effectiveness against obfuscation. Earlier techniques re-
lied on package and class hierarchies to measure similarity between app packages
and libraries. For example, LibScout [15] used package-flattened Merkle trees to
obtain fuzzy method signature hashes. LibPecker [43] constructed class signa-
tures from class dependencies and employed fuzzy class matching at the package
level for similarity comparisons. LibRadar [26] built clusters of apps and libraries
and generated fuzzy hashing features from the clusters based on the frequency
of Android API calls. Techniques dependent on class and package hierarchies
showed limited resilience to obfuscation techniques [28,39], particularly package
renaming and flattening, since obfuscators could easily manipulate class connec-
tivity by merging or splitting classes and packages.

In more recent approaches, method instructions were used to enhance re-
silience to obfuscation. For instance, LibD [24] constructed library instances
using homogeny graphs and utilized opcode hashes in each block of a method’s
Control-Flow Graph (CFG) for feature extraction. Orlis [34] constructed a tex-
tual call graph for methods and employed fuzzy method signatures to compute
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similarity. LibID [41] constructed CFGs from library binaries for feature extrac-
tion and utilized Locality-Sensitive Hashing for similarity. ATVHunter [37] used
class dependency graphs to split library candidates and utilized both method
CFGs and basic-block opcodes features for similarity measurement. Libloom [21]
encoded signature sets from package and classes in a Bloom Filter and computed
similarity with a membership threshold. While these tools offered some resilience
to obfuscation techniques, their detection power degraded with package flatten-
ing and code shrinking as demonstrated in our experiments.

8 Conclusion

We introduced Libra, an Android library identification tool designed to tackle
the challenges of detecting libraries within Android apps, particularly in the
presence of obfuscation. Libra effectively addresses issues such as multiple and
shared root packages, code shrinking, and instruction bias. Employing a two-
phase learning and detection approach, Libra utilizes novel techniques to handle
obfuscation and code shrinkage. These techniques involve leveraging data from
method descriptors and instructions, encoding method instructions, employing
fuzzy algorithms, and utilizing a two-component weighted similarity calculation.
Our benchmarking results on multiple datasets showcase the effectiveness of
Libra, demonstrating its ability to accurately identify library names and versions
across various degrees of obfuscation.
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A Method Encoding Codebook

Table A.1 shows the codebook used by Libra to encode method instructions.
We conducted feature selection to determine the best mapping using Fisher’s
score [18] to gain insights into the most discriminatory instructions. Our anal-
ysis revealed that field getters, setters, and arithmetic operators exhibited low
variance, making them less useful for discrimination. Consequently, we decided
to combine these arithmetic instructions into a single move instruction.

B Search Space Reduction from Library Pairing

The pairing size complexity for pairs that satisfy condition one is O(k), where n
is the number of libraries in the database, and k ≪ n represents the group size.
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Table A.1. Bytecode encoding codebook used by Libra.

Smali Instruction Encoded Representation
nop -
move* v0, v1 move
move-result* v0 move
return* return
const* v0, lit move
monitor-* v0 monitor
check-cast v0, type call
instance-of v0, v1, type call; move
array-length v0, v1 call; move
new-* v0..vn, type call; move
goto* ref jump
cmp* v0, v1, v2 if; move
if-* v0, v1, ref if
*get* v0, v1, v2 move
*put* v0, v1, v2 move
invoke-* v0..vn ref call
neg-* v0, v1 move
not-* v0, v1 move
*-to-<type> v0, v1 call; move
arith./log.-* v0, v1, v2 move

On the other hand, the pairing size complexity for condition two is O(|PC2|),
where PC2 is defined as:

PC2 =

{
⟨C,L⟩ | C ∈ A,L ∈ D,

abs(|A| − |D|)
max(|A|, |D|)

< τ

}
where C is the library candidate, L is the library, A is the app, and D is the
database. If no conditions are met, the library candidate is paired with the
entire database, resulting in a pairing size complexity of O(n). Note that this is
unlikely as there are a wide range of library sizes from the order of 100 to 103

and condition two is likely to be met.
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