Quokka

Dazed Droids

A Longitudinal Study
of Android Inter-App
Vulnerabilities

ACADEMIC PAPERW

Dazed Droids: A Longitudinal Study of Android Inter-App

Vulnerabilities
Ryan Johnson* Mohamed Elsabagh
Kryptowire Kryptowire
Fairfax, VA, USA Fairfax, VA, USA
rjohnson@kryptowire.com melsabagh@kryptowire.com
Angelos Stavrou” Jeff Offutt
Kryptowire George Mason University
Fairfax, VA, USA Fairfax, VA, USA
astavrou@kryptowire.com offutt@gmu.edu
ABSTRACT KEYWORDS

Android devices are an integral part of modern life from phone to
media boxes to smart home appliances and cameras. With 38.9%
of market share, Android is now the most used operating system
not just in terms of mobile devices but considering all OSes. As ap-
plications’ complexity and features increased, Android relied more
heavily on code and data sharing among apps for faster response
times and richer user experience. To achieve that, Android apps
reuse functionality and data by means of inter-app message passing
where each app defines the messages it expects to receive.

In this paper, we analyze the proliferation of exploitable inter-app
communication vulnerabilities using a rich corpus of 1) a represen-
tative sample of 32 Android devices, 2) 59 official Google Android
versions, and 3) the top 18,583 apps from 2016 to 2017. This corpus
covers 91 Android builds from version 4.4 to present. To the best
of our knowledge, ours is the first longitudinal study looking into
the propagation of vulnerabilities across AOSP builds, between
AOSP and a diverse set of devices, and across app versions over
a period of 13 months. To identify inter-app vulnerabilities, we
developed Daze as a swift and fully-automated framework for ex-
tracting app components and fuzzing all app interfaces. Daze needs
only about three hours for full-device analysis or two minutes per
app on average. We identified 14,413 vulnerabilities and quanti-
fied their exposure time and the number of versions affected. Our
findings revealed that 51.7% of Android devices and 49% of the top
300 apps on Google Play contained at least one critical inter-app
vulnerability. We found that about 15% of fixed vulnerabilities lived
for more than 100 days before being patched, more than 20% of
unpatched vulnerabilities have existed for at least 180 days, and
45% of unpatched vulnerabilities persisted through the latest two
to four consecutive app versions in our dataset.

*Also with George Mason University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASIA CCS ’18, June 4-8, 2018, Incheon, Republic of Korea

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5576-6/18/06...$15.00
https://doi.org/10.1145/3196494.3196549

Android System Fuzzing, Denial of Service, Data Disclosure

ACM Reference Format:

Ryan Johnson, Mohamed Elsabagh, Angelos Stavrou, and Jeff Offutt. 2018.
Dazed Droids: A Longitudinal Study of Android Inter-App Vulnerabilities. In
ASIA CCS ’18: 2018 ACM Asia Conference on Computer and Communications
Security, June 4-8, 2018, Incheon, Republic of Korea. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3196494.3196549

1 INTRODUCTION

Smart devices and appliances have evolved, striving to be fully
integrated with our day-to-day activities, to the point that various
research efforts [19, 23, 28] are currently engaged in studying the
effects of nomophobia, the fear of being without a mobile device.
Flurry Analytics reported that the United States population now
spends at least five hours a day on their mobile devices [4]. More-
over, according to International Data Corporation, 373.1 million
mobile devices were shipped worldwide in the third quarter of
2017 alone, representing a 2.7% year-over-year increase [1]. En-
deavouring to offer a rich user experience that can fulfill the grow-
ing reliance on mobile devices, mobile platforms are heavily built
around a design paradigm that encourages mobile applications —
hereinafter referred to as apps — to seamlessly interact. Specifi-
cally on Android platforms, apps despite running in isolation, can
share their services and data via message passing over inter-app
communication channels offered and managed by the platform. We
particularly focus on Android platforms in this study because of
their popularity (85% market share of mobile devices in the first
quarter of 2017 [3]).

Much of the communication between and within Android apps
occurs via “intent” objects: a message-like abstraction that provides
a fundamental communication mechanism that facilitates data ex-
change. Unfortunately, developers can (un)intentionally expose
interfaces in their Android apps, making them accessible to other
apps co-located on a mobile device. An exposed interface offers a
potential entry point into an app that can be abused. This can be
caused by improper handling of received intents, for instance, mak-
ing assumptions about the presence of certain data in a received
intent. In addition, inadequate exception handling of inter-app mes-
sages can enable an app to force-crash other apps and services or
even the Android Operating System (OS) itself. System crashes can
be intentionally and repeatedly caused by a malicious app on the

https://doi.org/10.1145/3196494.3196549
https://doi.org/10.1145/3196494.3196549

device to create local Denial of Service (DoS) attacks or perhaps
a crypto-less ransomware. Although the Android OS offers mech-
anisms to force-remove third party apps, these removal methods
may not be available on all devices or may require wiping all user
data on an infected device [17].

The Android Open Source Project (AOSP) developed by Google
provides the official version of Android code.! Android vendors
fork AOSP and modify it to add features and provide a custom user
experience. Faults in a version of AOSP are severe since they will
propagate to all Android devices that run or extended that partic-
ular version. Vendors also risk introducing new vulnerabilities in
addition to the ones inherited from AOSP. Several research efforts
(e.g., [2, 6, 16, 18, 20, 22, 27, 29]) have analyzed Android apps for
the existence of inter-app communication vulnerabilities. However,
existing solutions have been largely manual, incurred unpractical
analysis time, required special permissions and knowledge of the
target device and OS version, and focused on examining the re-
silience of statically-declared Android app components against DoS
attacks caused by malformed intents. As we show in this paper, sev-
eral classes of vulnerabilities — including DoS, privilege escalation,
and data leakage — do exist outside the intent model as well as in
dynamically-declared app components (see Sections 2 and 4).

To help address these shortcomings, we designed and imple-
mented Daze, a novel system to automatically trigger and ana-
lyze inter-app communication vulnerabilities in Android platforms.
Daze uncovers inter-app developer errors and their effects by effi-
ciently enumerating and null-fuzzing all statically and dynamically
accessible app components on a device, including these of the An-
droid OS itself. Daze fuzzes exported app interfaces using both
null and not-null but empty payloads, among others, to expose
developer errors of omission (e.g., not checking for the absence
of inter-app message data at runtime or not protecting privileged
components). These errors can result in process crashes, system
crashes, privilege escalation, and data disclosure. Daze identifies
instances of privilege escalation by monitoring the files created
on external storage and changes to the system settings as each
component is tested. Daze is completely automated and does not
require prior knowledge about the target device.

Furthermore, going beyond just discovery, Daze automatically
generates zero-permission exploits that give direct control over the
victim device availability and usability. This can be exploited to
craft ransomware via crypto-less attack vectors. Having the ability
to crash an app may seem low-risk, but it can enable a malicious
app to set itself as the gatekeeper to a vulnerable app, determining
when and if a vulnerable app gets to execute. Even worse, persis-
tently exploiting a known fault in an app enables a controlled
crash-loop DoS attack on Android devices where the Android OS
recurrently pops up the app crash dialog (Figure D.1) and restarts
the crashing app in the background, but then the attacker crashes
it again. This allows the attacker to control overall device usabil-
ity since the recurring OS app crash dialog box takes the input
focus away from other Graphical User Interface (GUI) elements,
hindering the user from productively interacting with the device.

1 AOSP available at: http://source.android.com

Our findings are alarming: using Daze to exhaustively scan all
unique Android 4.4 to 8.0 platform firmware builds across 32 dif-
ferent devices from low-end to flagship Android vendors, we dis-
covered that more than 50% of current devices contain a system
crash vulnerability. Exacerbating the problem, we show that system
crashes can result in user data disclosure on certain Android devices
due to vendor modifications. Overall, Daze discovered 4,972 pro-
cess crashes and 64 system crashes in the tested devices, providing
reproducible test cases and stack traces for error resolution. Some
of the identified process crashes belong to processes that provide
telephony and Bluetooth services that can be targeted for DoS at-
tacks. Specifically, our testing revealed that pre-installed GApps
provide a large DoS attack surface.

In addition, we analyzed a sample set of 18,583 apps downloaded
from the top free apps in each category on Google Play between
March 2016 and April 2017. We found that once a inter-app vul-
nerability is introduced, it is likely to be present in subsequent
versions of an app. We also discovered that about 15% of patched
vulnerabilities in the apps in our dataset persisted for 60 to 600
days. In addition, 50% of unpatched vulnerabilities existed in at
least the two latest app versions in our dataset, with around 30% of
unpatched vulnerabilities persisting for more than 100 days till the
end date of our data collection period. Moreover, 49.6% of the top
300 apps can be easily crashed by a zero-permission external app.

To understand the origin and propagation of the vulnerabilities
we discovered, we also tested the robustness of AOSP builds and,
by extension, the vendors that modify them. We tested all avail-
able AOSP builds for the Nexus 5 and Nexus Player devices and
discovered that all Android 5.1, 6.0, and 6.0.1 builds for Nexus 5
were vulnerable to a system crash. We also found that each of the
31 AOSP TV builds from Android 5.0 to 8.0 had at least one critical
DoS vulnerability that may require a factory reset to recover. We
further discovered an attack vector that can cause any Android
device produced to date to run out of memory.

To summarize, we make the following contributions:

o Daze, an automatic inter-app vulnerability analysis system
to test all exposed app interfaces on Android devices.’

e We provide a longitudinal analysis covering 32 different
Android devices, all Android AOSP 4.4 to 8.0 builds, and
18,583 free apps from Google Play.

e We discovered several zero-day DoS, data disclosure, and
privilege escalation vulnerabilities across different devices
and vendors.

e We provide a novel universal DoS attack on any Android
platform by tricking a critical system process into running
out of memory.

2 BACKGROUND

Android apps are compartmentalized into components to facilitate
code reuse. An app component is an entry-point in a mobile app
that serves a particular purpose within the context of the app. App
components are typically declared and statically-registered in a

2GApps are the proprietary Google apps that come pre-installed on most Android
devices, such as the Play Store, Gmail, and Maps.
3 Daze is available at: https://github.com/Kryptowire/daze

http://source.android.com
https://github.com/Kryptowire/daze

public void onReceive(Context context, Intent intent) {

String action = intent.getAction();

if (action.equals("com.sec.android.intent.action.SSRM_MDNIE_CHANGED")) {

Bundle bundle = intent.getExtras();

int value = bundle.getInt("value"); // NullPointerException if ‘bundle‘ is null

Listing 1: Recreated source code of a vulnerable broadcast receiver.

manifest file (AndroidManifest.xml) that provides the app speci-
fications and configuration data. Android provides four different
app components from which an app can be built: activity, service,
broadcast receiver, and content provider. An activity provides
a GUI for direct user interaction via GUI elements. An activity is
the only app component that provides a GUI to the user. A service
performs long-running tasks in the background. A broadcast re-
ceiver registers for particular events and responds to them as they
occur. A content provider acts as an archive of structured data.

2.1 Accessing App Components

Of the four app components, all but the content provider are ac-
cessed by sending “intent” objects. An intent is an abstraction for
a message that is sent by a source app component to one or more
destination app components. Intents are the primary means with
which an app communicates with itself and other apps. The destina-
tion of an intent is indicated by including an action and/or a unique
app component address (i.e., package name and component class
name).* An action is a string that generally indicates the purpose
of the intent (e.g., android.provider.Telephony.SMS_RECEIVED
for a received text message). App components can register for spe-
cific actions in the manifest file. An action may resolve to one or
more app components that can handle it. An intent often carries
embedded data, including primitive types and complex objects.
An app component declared in the manifest file can set the access
requirements for other apps to interact with it. A component can
be “exported,” exposing its functionality to the system and other
apps on the device.” App components are generally not exported
by default (i.e., accessible only from within the same app) except
dynamically-registered broadcast receivers, which are always ex-
ported. The Android OS will export an app component (potentially
against the developer’s intentions) if the app component declares
at least one action that it can handle and does not explicitly state
that it should not be exported. Additionally, apps can control access
to their exported components by declaring and using self-declared
permissions or permissions declared by the Android OS.

2.2 Errors of Omission

Once an intent is sent to an app component, various errors of omis-
sion can occur. If the destination app component is declared but not
actually implemented, the receiving app will crash due to an un-
caught ClassNotFoundException. An undefined app component is

4A package name is a unique identifier for an Android app. No two apps can have the
same package name on the same Android device.

SThe exported property is controlled by setting the android: exported attribute for
the component in the manifest file. See: https://developer.android.com/guide/topics/m
anifest/receiver-element.html#exported

a component that has a valid entry in the app’s manifest file but the
component itself is not implemented in the app’s code. If the com-
ponent receiving an intent is implemented, there are various excep-
tions that can be encountered by further errors of omission resulting
in an uncaught exception and process termination if appropriate
error handling is absent. Even before processing the received intent,
an app component may encounter an UnsatisfiedLinkError if
a required native library is missing. When an intent is received
by an app component, one or more callback methods specific to
the app component type are executed. During the processing of a
received intent, the most common error of omission manifests as a
NullPointerException due to accessing null objects. Certain apps
do not gracefully handle the absence of expected data, resulting
in an unexpected crash. Most of the exceptions can be addressed
through proper input validation and exception handling at runtime.

In some cases, a received intent will not contain any embedded
data. In other cases, the sole purpose of the app component is pro-
cess embedded data from an intent. Internally, most embedded data
within an intent is stored in a Bundle object, which is a map data
structure that allows the storage and retrieval of key-value pairs.
A recipient app component may also extract the action string or
embedded Uniform Resource Identifier (URI) of an intent. When an
app component with inadequate error handling and null-checking
assumes these values will not be null, a NullPointerException
can occur. The Android OS itself declares components accessible to
third-party apps. An uncaught exception occurring in a component
within the Android OS can lead to the crashing of critical system
processes, triggering the OS to reboot in an attempt to recover.
We provide a motivating example in Listing 1 that shows a source
code snippet from a broadcast receiver app component within the
Android OS that will encounter a system crash if the received intent
does not carry a Bundle object. The snippet was recreated from
disassembled bytecode from a Samsung Galaxy S6 Edge running
Android 6.0.1 with a build number of MMB29K . G925AUCS5DPK5.

In addition to inadequate error handling, certain app components
will themselves throw a RuntimeException if an unexpected data
item is not present in the intent. Various other exceptions can occur,
such as errors in handling the app lifecycle (I11legalStateExcept
ion), forgetting to call a base method (SuperNotCalledException),
and referencing classes that are not defined (NoClassDefFoundErr
or). The full list of exceptions we encountered in our experiments
are provided in Tables D.3 to D.5.

3 OVERVIEW OF DAZE

Figure 1 illustrates the workflow of Daze. We developed Daze to
automatically determine if certain classes of concrete failures or

https://developer.android.com/guide/topics/manifest/receiver-element.html#exported
https://developer.android.com/guide/topics/manifest/receiver-element.html#exported

ﬂﬁ] Enumerate all Apps |
¥

Android
Device

| Extract Static Components |

| Extract Dynamic Components |

Monitor i Null-Fuzzing |—>

System State

Exploits

Figure 1: Workflow of Daze.

unexpected behavior exist in Android apps and the Android OS
on a given device. Daze tests all four types of app components
and provides the user with a list of faulty processes, stack traces,
discovered behaviors, and an exploit composed of a trace of events
and Application Programming Interface (API) calls that can be
replayed to trigger a discovered vulnerability.

Daze is implemented in Java in 8.1K SLOC and associated scripts.
Daze was not extended from any other previous software project.
Scanning is done in an automated manner where the user selects
desired options and starts the analysis. Daze uses null-fuzzing —
including not-null but empty objects — to fuzz app components.
We opted for null-fuzzing over data-fuzzing since random data-
fuzzing offered a negligible improvement (~1%) over null-fuzzing
of Android components as witnessed by prior studies [2, 22] and
elaborate data-fuzzing techniques suffer from impractical runtime
requirements (hours per app [15]) making them unsuitable for test-
ing an entire device.

3.1 Identifying Statically Registered
Components

Daze extracts statically-registered components from an app by
querying the OS package manager for all installed packages, then
iterating through each package information looking for compo-
nents declared with the activities, services, receivers, and providers
tags. The package manager fills in this information from the app’s
manifest file, which cannot be modified once the app has been in-
stalled. Daze ignores components that are not exported or require a
permission to access. The focus is for zero-permission reproducible
test cases to crash apps or the system, so only open components
with no permission requirements are considered. In addition, users
may be more willing to download an app with no permissions. Since
Daze is open-source, it can be easily modified to request all available
third-party permissions and test components that are protected
with permissions declared by the Android OS.

3.2 Identifying Dynamically-Registered
Broadcast Receivers

Broadcast receivers are the only app components that can be
both statically registered and dynamically registered. At runtime,
an app can create and register a broadcast receiver to be eligible to
receive one or more action strings. Dynamically-registered broad-
cast receivers can only be addressed by using an action string.
Daze enumerates dynamically-registered broadcast receivers by

executing the command "dumpsys activity broadcasts’. For
security reasons, third-party apps are not allowed to obtain this
list of dynamically registered broadcast receivers or read from the
system-wide Android log. To workaround this limitation, Daze is
granted the system development permissions using the Android
Debug Bridge (ADB) command ‘adb pm grant <package> <pe
rmission>".° The READ_LOGS and DUMP permissions can only be
externally granted via ADB for development or testing. After these
two development permissions are granted to Daze, it can obtain a
listing of the active broadcast receivers, including those that are
dynamically-registered, and access the system-wide Android log.
Daze parses the Android log to detect app crashes, native crashes,
and system crashes.

3.3 Testing Intent-Accessible Components

Daze identifies statically- and dynamically-registered components
residing within all apps on the device and sends intents to all discov-
ered components that are exported and not permission-protected.
For all components except content providers, the system sends up
to four intents: First, it sends an intent containing the minimum
data required to be delivered to the target component — namely,
the package name and class for an activity, broadcast receiver, or
service, or the action string for dynamically-registered broadcast
receivers. If a crash is not encountered due to this intent, then
Daze adds an empty Bundle object to the intent and sends it again.
If an error is still not encountered for components that are not
dynamically-registered, it adds an empty action string and sends
the intent again. Lastly, an intent with a shcemeless URI is sent. We
chose to focus on the action string, Bundle, and URI since, based
on our experience, these are commonly used data items in intents.
To cover all code sites reachable by an intent, the system sends
intents with the FLAG_ACTIVITY_SINGLE_TOP flag to also force the
delivery of the intent to the onNewIntent method of activity compo-
nents. Daze also calls the stopService method to trigger cleanup
routines that may access the intent that started the service.

Daze monitors the Android log to record the system-wide effects
of issued intents. Once it finishes sending intents to all exported
components, it examines the log file recorded for each sent intent.
To avoid side-effects and to isolate different runs, Daze separately
replays each intent that resulted in a fatal exception or a system
crash to verify that it indeed triggers a failure condition to provide
accurate attribution to individual intents.

3.4 Testing Content Providers

Unlike other app components, content providers are not directly
accessed via intents. Any content provider will have to implement
a set of methods from the abstract ContentProvider class pro-
vided by the platform. Apps can read and write data to a content
provider using a platform-managed content resolver which has
the most safeguards with regard to handling null object references
and invalid input. In addition, content providers are not exported
by default and tend to be protected by permissions since they act
as data repositories. Content providers are generally backed by
an SQLite database and must implement the following operations:

© ADB is an Android SDK tool that allows a computer to interact with Android devices.

delete, insert, query, and update. Daze tests content providers by
null-fuzzing all callable methods in their classes.

Testing content providers provides some difficulty as a crash in a
content provider causes any app connected to the crashing provider
to be killed. Specifically, ActivityManagerService within the An-
droid OS will terminate any process with an ongoing connection
to a crashing content provider. Daze will stop testing a content
provider after this occurs 3 times and note that the content provider
encounters a fatal error during testing.

3.5 Monitoring System State

Prior to the sending of each intent, Daze enumerates all the files
on external storage (SD card) to obtain a snapshot of the current
state. After sending intents to a component, it will again take a
snapshot of the files and compare. If a file has been removed or
added, the change will be detected and the file path and file size will
be recorded. External storage can be read by any app that requests
the READ_EXTERNAL_STORAGE permission, so sensitive data should
not be written to it. At the end of the analysis, the changes are
presented to the user which can view the newly added files to
examine their contents. This capability can detect the taking of
screen snapshots and dumping of log files to external storage which
was observed during the testing of devices (see Section 4.3 for
details). Screen snapshots are flagged since they are stored in a
known directory on external storage with a known file extension.

Changes to device settings are also recorded before and after
testing each component to determine if a privileged process modi-
fies them during its execution. This is accomplished by querying
system properties and the secure, global, and system settings.” The
capability shows whether the tested component has made changes,
such as enabling or disabling various communication capabilities.
For example, the enabling and disabling of Wi-Fi is automatically
detected by monitoring changes to the value of wifi_on key in
global settings.® In addition, a component may extract an expected
field from an incoming intent and write its value to device settings.
This may be observed when a value of null is written to system
settings instead of a concrete value.

Once an app encounters a fatal exception, the Android OS dis-
plays a dialog box to the user indicating that an app has crashed.
Once this dialog box is present, no additional components can be
launched within the crashed app until the dialog box is dismissed
or until a crashed service in the app restarts. To be able to quickly
launch additional components in a crashed process, Daze obtains
the current window handle by using the dumpsys command and
uses the input command via ADB to inject key events to program-
matically dismiss the dialog box. This allows for the crashed process
to be restarted when testing a different app component, without
requiring user intervention.

4 STUDY 1: DEVICE EVALUATION

We tested Daze on a representative set of 32 low-end to flagship
Android devices from 21 vendors covering Android 4.4 to Android

7Secure settings are present only on devices running API level 17 and above.
8 Additional items in global settings are found in https://developer.android.com/refere
nce/android/provider/Settings.Global html

Table 1: Unique app and system crashes per device. 0 indi-
cates the vulnerability was introduced by the vendor. # in-
dicates it was introduced by AOSP.

) oS App Sys

Device Version Crashes Crashes

0 W 0 »
Alcatel A30 7.0 66 146 O 0
Alcatel A30 Plus 7.0 77 135 0 0
Amazon Fire 7.0 Inch Tablet 5.1.1 66 34 0 1
Amazon Fire TV Stick 2 5.1 18 2 0 1
BLU Advance 5.0 5.1 41 76 0 1
BLU Grand M 6.0 36 9 0 1
BLU Grand XL 7.0 34 135 0 0
BLU R1 HD 6.0 43 139 1 1
Cubot X16S 6.0 66 113 0 1
Doogee X5 6.0 59 102 0 1
Figo Atrium 5.5 5.1 37 90 1 1
Figo Virtue 4.0 6.0 33 133 0 1
Google Pixel 8.0 0 137 0 0
Juning TV Box 5.1.1 22 78 2 1
Juning Z8 5.1.1 69 102 0 1
Kata C2 6.0 75 125 0 1
Leagoo Z5C 6.0 13 88 0 1
LG Phoenix 2 6.0 112 160 1 0
NPOLE Tablet 5.1.1 14 35 0 1
Nvidia Shield Android TV 7.0 39 74 0 1
Plum Axe Plus 2 6.0 51 125 0 1
Plum Compass 6.0 21 84 0 1
RCA Q1 6.0 55 117 0 1
RCA Voyager Tablet 2 5.0 28 121 1 0
Samsung Galaxy S5 6.0.1 57 145 14 1
Samsung Galaxy S6 Edge 6.0.1 98 98 17 1
Samsung S8+ 7.0 45 70 0 0
Sony Bravia Android TV 6.0.1 86 65 0 2
Ulefone Power 2.0 7.0 43 128 0 0
Xiaomi Redmi 4 6.0.1 100 82 0 2
Yuntab 4.4.2 92 145 0 0
ZTE Maven 2 6.0.1 74 124 1 2
TOTAL 1,670 3,302 26 38

8.0. In this section we discuss our findings for the number of con-
crete process crashes, system crashes on specific Android devices,
instances of privilege escalation, and data disclosure on the tested
devices.” 72% of the tested devices contained at least one system
crash vulnerability. We tested all of the pre-installed apps present
on the 32 Android devices. Table 1 provides the total number of pro-
cess and system crashes on the tested devices. Daze triggered 4,972
unique app crashes and 64 unique system crashes across all devices,
taking about three hours on average to scan an entire device.

We attributed each of the vulnerabilities discovered in the tested
devices to either vendor apps or AOSP apps (see Table 1; ratios are
plotted in Figure D.2).'° We identified AOSP apps by recording the
package names of the apps present in AOSP builds for smartphones,
tablets, and Android TV. We attributed a fault to an AOSP app if
it occurred within an app in the AOSP apps list. For attributing
system crashes, we manually examined the stack trace and checked
whether it occurred in AOSP by examining AOSP source code.

9 All findings have been responsibly disclosed to Google and affected vendors prior to
the publication of this document.
1OWe made no distinction between GApps and AOSP apps in this study.

https://developer.android.com/reference/android/provider/Settings.Global.html
https://developer.android.com/reference/android/provider/Settings.Global.html

Table 2: Processes with the highest number of crashes.

Process Name # of Crashes

com.google.android.gms.ui 1,011
com.android.settings 611
com.android.phone 572
com.google.android.setupwizard 228
com.android.contacts 111
com.google.android.gms 104
com.google.android.gms.persistent 94
com.android.mms 84
com.android.cts.priv.ctsshim 84
com.google.android.gms 81
com.android.bluetooth 67
android.process.media 66

4.1 App Crash Vulnerabilities

We discovered that more than 50% of fatal exceptions were present
in AOSP apps. Amazon devices were an exception since Amazon
maintains its own Android version called Fire OS that primarily
uses Amazon’s apps instead of GApps. For the Google Pixel device,
we consider all apps on the device to be AOSP/GApps. Table 2 shows
the top 12 crashed processes across all devices. These were either
Google or AOSP processes, with Google gms. ui (a process within
the Google Play Services app) topping the list at a total of 1011
crashes. A particularly important process, com. android.phone, is
surprisingly vulnerable to being crashed by an external app with a
total of 572 crashes. A crash of the com. android. phone process can
deny telephony functionalities, including the ability to receive or
make calls, which can have dire consequences in times of emergency.
There were, on average, 17.87 vulnerable components on each de-
vice that crash the com.android.phone process. This ranged from
the Google Pixel running Android 8.0 with 2 vulnerable compo-
nents to the Yuntab running Android 4.4.2 with a total of 54 distinct
components or broadcast actions to crash the com.android.phone
process. The com.android.bluetooth process has the 11 most
crashes with a total of 67. Launching continual DoS attacks using
intents can restrict the user’s access to wireless communication
capabilities on the device, or hinder the usability of the device by
causing an app crash-loop as discussed in Section 1.

4.2 System Crash Vulnerabilities

For each system crash that Daze uncovered (see Table 1), we in-
vestigated the cause to attribute it to either AOSP code or vendor
code. All of the devices were running the most recent Android
versions available to them at the time of testing. The majority of
system crashes were caused by vendor modifications (62.5%). If the
system crashes from Samsung were excluded, AOSP code would be
responsible for 85% of the system crashes. Vendor modification was
responsible for system crashes in three component types: broad-
cast receiver (34 crashes), service (1 crash), and content provider (1
crash). AOSP code was responsible for crashes in two component
types: activity (22 crashes) and broadcast receiver (6 crashes). This
breakdown is provided in Table D.1. All of the reported system
crashes were triggered by a zero-permission third-party app.
Implementation errors in AOSP code are particularly severe due
to their ubiquitous nature due to code inheritance. We tested all 27

factory builds for Nexus 5 and discovered two app components that
do not properly perform null-checking before operating on data.
We discovered that all AOSP 5.1 to 6.0.1 builds contain a vulnera-
ble activity named com.android.internal.app.IntentForward
erActivity in the android package that crashes the system when
the intent contains a null action string. In addition, we discovered
that all Nexus 5 AOSP 6.0.1 builds contain a vulnerable broadcast
receiver that will crash the system when receiving a broadcast in-
tent with an action of android.net.conn.CONNECTIVITY_CHANGE
_SUPL and an empty body. These two components are explained in
more detail in Section 6. These vulnerabilities have been propagated
to the vendors’ implementations of Android as shown in Table 1.

Of all the devices we tested, Samsung contained the most ex-
posed interfaces that can be used to make the device encounter
a failure state via a system crash. We initially reported that the
Samsung Galaxy S6 Edge (AT&T) running Android 6.0.1 with a
build number of MMB29K.G925AUCS5DPK5 contained 18 different
vulnerable components. We received 6 Samsung Vulnerabilities
and Exposures (SVEs) for vulnerabilities discovered using Daze. Af-
ter another disclosure for the Samsung Galaxy S8+ running Android
7.0 with a build number of NRD90M. G955USQUTAQD9 containing 7
vulnerable broadcast receivers. Samsung fixed all the vulnerable
components in their current Android devices. This is particularly
relevant since Samsung Android devices were also disclosing user
data during a system crash as discussed in Section 4.4 and also
held the greatest global market share of smartphones in Q3 2017
[1]. Interestingly, despite null-checks present in content providers,
Daze crashed Juning TV running Android 5.1.1 with a null pointer
exception in the HdmiControlService$SettingsObserver class
of the com. android. server.hdmi package.

4.3 Privilege Escalation Vulnerabilities

We discovered that various components on the tested devices could
be used for privilege escalation in the form of a confused deputy
attack [14]. This occurs when a process uses the exposed interface
of a privileged process to perform an action on its behalf. The
confused deputy attack is well-known on Android and research
has been conducted to mitigate its impact [8, 11, 13]. Our findings
show that this issue still persists in Android on a range of devices.

The Android OS will export an app component in certain circum-
stances even if this is not what the developer has intended. Even if
an app component does not have the android: exported attribute
set to true, the OS will still export the component if it contains at
least one intent-filter. An intent-filter is used by an app
component to register for action(s) that it it expects to receive. An
exported component will be accessible to all external apps if the
component does not use the android: permission attribute in its
manifest file. The android: permission attribute creates an access
requirement that only allows processes with the specified permis-
sion to interact with the app component. Android app developers
have a tendency to unintentionally export app components, which
makes them accessible to third-party apps [10]. Exported compo-
nents can lead to privilege escalation and local DoS attacks [13, 22].
Table 3 displays our findings showing the device, Android version,
and the capability obtained by sending an intent.

Table 3: Discovered privilege escalation vulnerabilities in common Android devices and Android OS versions.

Device oS Build ID Privilege Escalation Action

Alcatel A30 7.0 NRD90M Take screenshot

Alcatel A30 Plus 7.0 NRD90OM Take screenshot

Amazon Fire TV Stick 2nd Gen. 5.1 LMY470 Enable/disable Wi-Fi

BLU Grand XL 7.0 NRD90M Device shutdown

Doogee X5 6.0 MRA58K Video record screen

Juning TV Box 5.1.1 LMY49F Take screenshot

Leagoo Z5C 6.0 MRA58K Factory reset

LG Phoenix 2 6.0 MRA58K Device shutdown

MXQ TV Box 442 KOT49H Factory reset; brick the device

Plum Compass 6.0 MRA58K Factory reset

Samsung S6 Edge (AT&T) 6.0.1 MMB29K Initiate firmware update; forget Wi-Fi networks; device shutdown
Ulefone Power 2 7.0 NRD90M Device shutdown; kill foreground app
Xiaomi Redmi 4 6.0.1 MMB29M Take screenshot; leak bug report

Of particular concern are devices that can be “factory reset”
simply by sending an intent, a capability that is supposed to be
reserved for system apps and enabled Mobile Device Management
(MDM) apps. A factory reset will wipe all user data. The most severe
privilege escalation we noticed occurred in the MXQ TV Box which
has an exported broadcast receiver named SystemRestoreRecei
ver that when called will brick the device, making it nonfunctional
even after a factory reset. This component modifies the system
partition so that the device will not boot properly.

Certain components can cause data leakage when receiving an
intent. For example, via a intent with only an action string, the
Xiaomi Redmi 4 device will dump the text of active notifications
and system log into a bug report on external storage. The Xiaomi
Redmi 4 device and three others devices contained an open interface
to a privileged process that will take a screenshot and write it to
external storage when it receives an intent with a specific action
string. Obtaining the contents of the screen is regarded as sensitive
and not granted to third-party apps. Using this vulnerability, a
malicious app can, for example, send an intent to open a messaging
app or an email app, then take a screenshot and dismiss the app
by sending an intent requesting the home screen. If needed, the
malicious app can cause a system reboot to remove any notifications
that a screenshot was taken.

4.4 Data Disclosure Vulnerabilities

A system crash is an exceptional event since a fatal error occurs
within a critical Android OS process. Vendors may be interested
in recording the cause, so it can be identified and fixed in future
releases. Certain vendors record the Android log and write it to
a file during or after a system crash. Information such as unique
device identifiers, the user’s email address, phone number, Global
Positioning System (GPS) coordinates, the body of text messages,
and sensitive log messages from other apps can be present in the
Android log. A system crash can result in information leak of sensi-
tive data if this log file is not adequately protected. Therefore, any
app on a vulnerable device can deliberately cause a system crash
to obtain and process the log file for sensitive user data.

We discovered that Samsung devices running Android 5.0 to 7.0
create a world-readable file that contains the kernel log and An-
droid log whenever a system crash occurs.'! Samsung introduced a

Uhttps://nvd.nist.gov/vuln/detail/ CVE-2017-7978

“special” system process called bootchecker to ease the collection
of needed debugging information after a system crash. However,
bootchecker failed at setting the proper file permissions of the
file in which it collects the logs, leaving it world-readable to any
app on the device. Some Android devices with a MediaTek chipset
have a modified debuggerd binary and non-AOSP system binaries
such as aee_dumpstate and aee_archive. The debuggerd process
sets the signal handlers for each process and will obtain debugging
information by attaching to the process before it terminates. When
a system crash occurs, it will attach to the system_server process.
The system_server process is a critical system process that pro-
vides services to apps. On certain devices with a MediaTek chipset, it
will then write a world-readable archive file containing the Android
log, the kernel log, and various other logs to the /data/aee_exp
directory or to the /sdcard/mtklog/aee_exp directory. The gen-
erated archive file is password-protected, but the password was
hard-coded in the debuggerd binary as X4rLa8f3. Examples of
vendors that exhibited this behavior are BLU, RCA, Kata, Yuntab,
Ulefone, and Figo. The two information disclosure vulnerabilities
we discovered and reported have been fixed.

4.5 Analysis Time

Figure 2 provides the time taken to analyze each of the 32 devices
in hours and provides the average (3.28 hours) over all devices. The
Amazon Fire TV Stick 2@ Generation took the least amount of time
(15.81 minutes) to analyze due to it having the lowest amount of
exported components (310). Of particular note are the Samsung
S5 and Samsung S6 Edge devices which took an extended amount
of time to analyze due to an aggressive OS policy that repeatedly
killed Daze for power management purposes.

5 STUDY 2: GOOGLE PLAY APP TESTING

Google Play is the official app distribution channel for the Android
platform, facilitating the installation of apps. To determine the
prevalence of inadequate exception handling during inter-app com-
munication within Android apps, we tested a representative sample
of 18,583 free Android apps from Google Play. These apps were
the most popular apps from each app category on Google Play that
were downloaded over the time period of March 2016 to April 2017,
once every four weeks. The 18,583 apps were comprised of 4,972
unique package names each of which had four different versions

https://nvd.nist.gov/vuln/detail/CVE-2017-7978

chart created with amCharts | amCharts

1ofl

Alcatel A30 1]
Alcatel A30Plus ——]
Amazon Fire 7 Inch Tablet 1
Amazon Fire TV Stick 2 J
BLU Advance 5.0]
BLU GrandM {_____|
BLU Grand XL 1]
BLURIHD{_]
Cubot X168 1
Doogee X5
Figo Atrium 5.5 1]
Figo Virtue 4.0 |
Google Pixel 1
Juning TV Box]
Juningz8 1]
KataC2 {1
]
I D |
1
]
1
1
]
I O
]
]
1
1

Leagoo Z5C A

LG Phoenix 2

NPOLE Tablet

Nvidia Shield Android TV 1
Plum Axe Plus 2

Plum Compass 1

RCA QI A

RCA Voyager Tablet 2
Samsung Galaxy S5
Samsung Galaxy S6 Edge 1
Samsung S8+

Sony Bravia Android TV
Ulefone Power 2.0
Xiaomi Redmi 4

Yuntab A

ZTEMaven2 1]

AVERAGE I | | |
0 2

4 6 8 10

Analysis Time (hours)

Figure 2: Analysis time in hours of all tested devices.

1200

1000

800

600

of apps

400

200

1 1 1 § A § 4
FFFFFFIISHEs &
of installs

Figure 3: Distribution of apps in our dataset. (Apps with mul-
tiple versions were counted only once.)

on average (rounded up). Figure 3 shows the distribution of apps in
our dataset grouped by unique package name (apps with multiple
versions were counted only once). We also separately tested the
top 300 most popular free apps on Google Play to determine the
exposure of the apps that have the largest number of users. The top
300 apps were downloaded on November 27, 2017.

Daze tested 18,583 apps and discovered that 34.7% of apps (6,463)
in the sample can be crashed externally by a zero-permission An-
droid app co-located on the device. Daze found a total of 14,413
fatal exceptions covering 53 types of exceptions. Table D.4 presents

file:///Users/user/Downloads/amcharts.editor.htm]

Table 4: Breakdown of the number of vulnerable compo-
nents for the Google Play study.

Type #Exported #Vulnerable %Vulnerable
Activity 62,328 7,483 12.0
Static Receiver 50,453 4,625 9.2
Dynamic Receiver 16,041 1,449 9.0
Provider 3,749 82 2.2
Service 11,219 774 6.9
TOTAL 143,790 14,413 10.0

a count of all fatal exceptions by type. The most common excep-
tion encountered during testing was Nul1PointerException with
10,862 instances, accounting for 75.3% of all fatal exceptions. Dur-
ing testing, Daze leaves various intent fields set to null, causing
a receiving process to crash if it does not perform proper null-
checking. The next most common reason for fatal exceptions (7.5%)
was the failure of the developer to implement a particular class
(ClassNotFoundException and NoClassDefFoundError) which
causes an uncaught exception when the class loader fails to find
the class. This is generally caused by an app component that was
registered in the app’s manifest not being implemented. The third
most common reason is the developer failing to call the appropriate
superclass method when executing an app component life-cycle
method, resulting in a SuperNotCalledException, occurring 650
times (4.5%). The 126 instances (0.8%) of SecurityException were
due to apps performing permission-protected functionality without
the corresponding permission.

Components form the skeleton of an Android app where the de-
velopers implement components to perform specific functions. Ta-
ble 4 presents the aggregate number of crashes by component type
and the corresponding ratio of externally-crashable components
to the total number of exported components. Activity components
are the most numerous and also the most vulnerable (12.0%) to
fatal exceptions. Content providers were the least vulnerable (2.2%).
The 18,583 apps had a total of 143,790 total exported components
with 14,413 apps being vulnerable (10.0%) to having an external
appPedtasiié process containing the vulnerable component.

To our knowledge, Daze is the only system that tests dynamically-
registered broadcast receivers. Of the 14,413 fatal exceptions Daze
identified, 1,449 were due to a dynamically-registered broadcast re-
ceivers registered by a component. Certain dynamically-registered
broadcast receivers register for actions that can only be sent by the
Android OS itself, which Daze is not able to send.

5.1 Longitudinal Vulnerability Analysis

We examined all apps that had between three to eight (inclusive)
different versions with the same package name — a total of 1,451
package names comprising 5,491 app versions. We determined, in
each version of an app, whether identified exceptions were intro-
duced in that version or inherited from the previous version of the
app. We consider all exceptions found in the 1% version (lowest
version code) of an app to be introduced in this version. (Note that
results reported in this section are conservative; see Appendix B).

We considered a recurring exception to be a specific exception
introduced in a particular version of an app that propagates to a
subsequent version. Within the 5,491 apps subset, Daze discovered

Inherited E—2 Introduced

100
90

2 80
B (0]
= 60

-

g 50
R
B 30
X 20

10
0

1 2 3 4 5 6 7 8
App Version

Figure 4: Vulnerabilities evolution as the relative percentage
of inherited and introduced exceptions in apps across eight
versions.

6,427 fatal exceptions. Of these exceptions 2,706 were unique and
the remaining were recurrences of the same exception in different
versions of the same app. We found that the majority of the excep-
tions were inherited from previous app versions instead of being
newly introduced as shown in Figure 4. Of all apps with at least 3
versions in our sample, 2,085 apps (37.9%) contained at least one
recurring exception and 1,008 apps (18.3%) contained at least one fa-
tal exception that was non-recurring. There were 1,580 apps (28.7%)
in the sample that contained the same exception recurring through
all versions (covering 419 apps with 1,580 different versions).

We categorized the 2,706 exceptions into those had been fixed
(1,241) and those that were still vulnerable (1,465) as of the last app
versions available in our sample. Figure 5 illustrates how many con-
secutive versions a vulnerability persisted through in our dataset.
Around 40% of the vulnerabilities were present in a single version
and then fixed in the subsequent version of an app. An open vulner-
ability is a vulnerability that is still present in the last version (most
recent) of an app contained in our sample. More than 50% of the
open vulnerabilities persisted in at least the latest two app versions
in our sample and about 10% of vulnerabilities persisted without
patching through at least the latest four versions of the same app.
Interestingly, 16% of the vulnerabilities were introduced in the last
version of apps in the sample (about 30% of open vulnerabilities).

We also examined the exposure window of vulnerabilities with
respect to time. We used AppBrain'? to determine when an app
version was updated on Google Play. AppBrain did not contain data
for all versions, so in those cases we relied on the date we down-
loaded the app. The exposure window starts when a vulnerable
app version was uploaded to Google Play. Certain apps that were
infrequently updated increased the size of the exposure window
since the available app version at the time of downloading may
have been uploaded prior to the beginning of the collection period.
For fixed vulnerabilities, the time window ends when the vulner-
ability is first fixed in a subsequent app version contained within
our sample. For open vulnerabilities, we conservatively assumed
that the vulnerability would be fixed in the version released after
the last version in our sample. If the last vulnerable version in our

12 AppBrain can be accessed at: https://www.appbrain.com

40
fixed E———
35 open .
w0
530
h=t
2
s
g
g
|
=
5
o
=
=X
- —

1 2 3 4 5 6 7 8

of consecutively vulnerable versions

Figure 5: Distribution of the exposure window in terms of
the number of consecutively vulnerable versions to fixed
and open vulnerabilities (till April 2017).

40
35
30
25

fixed mm—
open .

% of vulnerabilities
Do
(=]

= ull 1
60 120 180 240 300 360 420 480 540 600
Exposure Time (days)

Figure 6: Distribution of the exposure time of fixed and open
vulnerabilities (till April 2017).

sample was the current version on Google Play, we set the end date
of the exposure window to December 10, 2017.

Figure 6 provides the exposure window of fixed and open vulner-
abilities in days. About 35% of the vulnerabilities were fixed with
a subsequent update occurring within 60 days, and about 15% of
the vulnerabilities persisted for 60 to 600 days before being fixed.
More than 30% of vulnerabilities have been unpatched for 60 or
more days in our sample, about 30% of these have been unpatched
for more than 100 days, and 5% remained unpatched for more than
360 days (about 15% of the open vulnerabilities).

5.2 300 Most Popular Free Apps on Google Play

The top 300 free apps on Google Play are the most widely-used
apps available to Android devices with some apps having billions
of installations. One might presume that the top 300 apps are more
carefully coded to be resilient to inter-app vulnerabilities due to
their popularity and user base from which to obtain feedback. Daze
tested the top 300 free apps and found that 149 of the 300 apps
(49.6%) contained at least one vulnerable component that can be
crashed externally. There were a total of 310 fatal exceptions in the
300 most popular apps on Google Play. Table D.3 provides all the
fatal exceptions in the 300-app sample ranked by their number of
occurrences. The top 300 apps have a higher ratio of apps contain at

https://www.appbrain.com

least on vulnerable component than the 18,583 app sample (34.7%).
This is likely due to the fact that the top 300 free apps have a
higher ratio of exported app components (14.84) than the 18,583
app sample (7.75). The larger attack surface due to a higher average
number of exported components in the top 300 free apps, may result
in additional chances for developer error. The larger number of
components to test also affected the time to test each app for the
two samples as discussed in section Section 5.3.

The most popular app (as of November 30, 2017) named Rules Of
Survival (com.netease.chiji, version code 221929) had five fatal
exceptions. Two components (PushServiceReceiver and PushSe
rvice) encountered a SecurityException when creating a shared
preferences file with a mode of MODE_WORLD_READABLE. This is an
Android version compatibility issue since the API call that threw
the exception has behavior dependent on the Android version of
the device in which it runs. It is also a security issue since the
shared preferences file the app tries to create is world-readable
and may contain sensitive data. Google Photos (com.google.and
roid.apps.photos, version code 1992480) contained four fatal
NullPointerException exceptions. In the top 300 apps, there were
43 instances of ClassNotFoundException due to not implementing
a particular class. This occurred in 32 apps (10.7% of the sample)
with AdVenture Capitalist (com.kongregate.mobile.adventurec
apitalist, version code 2040016345) encountering the ClassNot
FoundException five times.

5.3 App Processing Overhead

The primary factor influencing the amount of time Daze takes to
test an app is the number of exported components that it contains.
Android apps have a wide variance in regard to complexity and the
number of interfaces it exposes externally. Basic apps can contain
a single exported activity component, whereas more complex apps
can contain hundreds of components. The number of dynamically-
registered broadcast components also increases overhead since each
will be tested. The average time to test an individual app for the
18,583 app sample was 76.5 seconds, whereas the average time to
test an app in the top 300 free app sample was 126.1 seconds. The
apps in the top 300 free apps on Google Play had 14.84 exported
components per app on average and the 18,583 had an average of
7.75 exported components per app. Figure 7 shows the analysis
time for the two samples. The 18,583 app sample contained outliers
that were due to apps with numerous components to test and retest.
There were over 101 apps that contained 60 or more exported
components. Some of the apps in the both samples trigger the
system to kill background processes to free up resources, collaterally
terminating Daze and causing it to incur delays in retesting the
component to attribute this behavior to the responsible component.
We discuss other fault propagation cases in Appendix A.

6 STUDY 3: STABILITY OF AOSP BUILDS

To determine the robustness of AOSP builds and, by extension, the
vendors that modify them, we tested all available AOSP factory
images (i.e., builds) for the Nexus 5 and Nexus Player devices.'?
The 27 builds for the Nexus 5 ranged from Android 4.4 (KRT16M)

3Factory images for Nexus devices can be downloaded from: https://developers.googl
e.com/android/images#hammerhead

1800

400
350
300
250
200 ot
150 ‘ ‘
100

50
0 = L

18k dataset

Analysis time (s)

top 300 apps

Figure 7: Analysis time statistics of the 18K apps and the top
300 apps datasets.

to Android 6.0.1 (M4B30Z). We installed each firmware available
for the Nexus 5, and used Daze to determine the exposed interfaces
of the core Android package (i.e., system_server). According to
Google’s Android Dashboards, as of November, 2017, 51.7% of all
Android devices (e.g., 5.1 to pre-7.0) contain a core component that
allows any app co-located on the device to quickly crash the sys-
tem by sending a single intent message.'* Although some of these
vulnerabilities have been fixed in later Android releases, a major-
ity of current Android devices are vulnerable due to the Android
fragmentation problem [21].

6.1 DoS on AOSP Android 5.1 to Pre-7.0

We discovered that the activity IntentForwarderActivity in the
com.android.internal.app package of the system_server pro-
cess can crash the system in all Android versions from 5.1 to ver-
sions prior to 7.0 (20 builds in total for the Nexus 5). This occurs
since the component blindly operates on the action string from the
intent without null checking, causing an uncaught exception by
calling the equals method on a null string reference.

We discovered that all 13 AOSP 6.0.1 builds for Nexus 5 were
vulnerable to system crash when an app broadcasts an intent for the
action android.net.conn.CONNECTIVITY_CHANGE_SUPL without
supplying any embedded data in the intent. The root issue resides in
the GpsLocationProvider class in system_server which dynam-
ically registers a broadcast receiver that assumes every broadcast
intent it receives will not contain a null Bundle object, resulting in
a null pointer exception exception when it tries to handle an intent
with no data. The vulnerable broadcast receiver is dynamically reg-
istered in the GpsLocationProvider constructor and an object of
this type will be created in the LocationManagerService.

6.2 DoS on AOSP Android TV 5.0 to 8.0

Dazetested all 31 AOSP factory images for the Asus Nexus Player de-
vice to determine the prevalence of vulnerable system components
within the Android TV device. We discovered that each of the 31
factory images from Android 5.0 (LRX21M) to 8.0 (OPR6.170623.021)
had at least one vulnerable broadcast receiver. Our results are pre-
sented in Table D.2. The primary cause of the system crashes in
Android TV were inadequate input validation and error handling

14Google Dashboards can be accessed at: https://developer.android.com/about/dashbo
ards/index.html

https://developers.google.com/android/images#hammerhead
https://developers.google.com/android/images#hammerhead
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html

for Bluetooth and telephony-related intents. The Bluetooth-related
intents caused uncaught exceptions in the RemoteControlService
class due to inadequate null-checking and the assumption a Bundle
will be not be null in the received intent. All the Android TV devices
we tested (Sony Bravia XBR-43X830C, Nexus Player, and Nvidia
Shield) would crash when certain bluetooth or telephony-related
broadcast intents were sent without an embedded Bundle object.

We examined the AOSP code and found that system_server
had registered broadcast receivers to listen for specific telephony-
related broadcast intents, even though the device does not have
telephony capabilities. Generally, the phone app (com.android. ph
one) uses the protected-broadcast tag in its manifest file so that
only the system can send these telephony-related intents. Since
the phone app is not installed on Android TV devices starting with
Android 6.0, a third-party app can send these broadcast intents and
cause system_server, and thus the device, to crash. Android TV
devices usually lack safe mode, so a persistent local DoS attack
against system_server can result in the user having to perform a
factory reset to recover the device if ADB was not enabled prior to
the DoS attack, possibly resulting in data loss.

7 A GENERIC ANDROID DOS ATTACK

Certain Android devices will not have exposed system compo-
nents that allow a single intent to crash the system. We have
discovered a novel approach to trigger a controlled boot loop at-
tack on Android by making the system_server process in the
Android OS encounter an OutOfMemoryError condition, leading
to a system restart. This is accomplished by a zero-permission
app repeatedly using a specific API method call where a param-
eter to the method call will end up being stored on the heap of
the system_server process. When a process is started in Android,
including system_server, it is allocated a fixed maximum heap
size. Once system_server allocates all of its heap memory, it will
eventually crash if it cannot free any memory.

Apps can dynamically register a broadcast receiver by providing
an object that inherits from BroadcastReceiver and an IntentFi
1ter object that contains one or more action strings. system_ser
ver manages all app components in the ActivityManagerService
class. When an action string is provided during broadcast receiver
registration, it is stored in a variable that can hold an arbitrary
amount of data (a HashSet instance variable named mfilters in
the IntentResolver class). Therefore, the app can provide large
strings to be stored on the heap of the system_server process to ex-
haust its memory, causing a system crash. The app registers broad-
cast receivers that have an IntentFilter with a unique action
string containing 55,405 characters and a integer value that is incre-
mented to ensure the action is unique. The registration of broadcast
receivers is quickly repeated and eventually the system_server
process throws an OutOfMemoryError as it tries to allocate more
memory while aggressively performing garbage collection.

Most of the OutOfMemoryErrors that repeatedly occur will be
caught by the underlying Binder implementation. Binder is part of
the Android architecture enabling Inter-Process Communication
(IPC) via a kernel module. Once the heap memory of system_ser
ver is exhausted, the app can wait for an uncaught error to occur or
perform additional action(s) to facilitate an uncaught exception such

as starting a large number of activities using the startActivitie
s(Intent[]) APImethod call. An app can determine the maximum
heap size for apps by obtaining value for the dalvik.vm.heapsize
system property. system_server will generally have a maximum
heap size of either 256 MB or 512 MB. Although current heap size
of system_server varies depending on its current workload, the
maximum heap size multiplied by a factor of 17.7 generally yields
the appropriate number of actions to register to exhaust its heap.

8 COMPARISON TO PRIOR WORK

It has been shown that vendor customization can introduce vulnera-
bilities via their pre-installed apps [25], hanging attribute references
[5], and device driver customization [30]. Previous studies have
found that apps and ad libraries tend to be over-privileged, with
more unneeded permissions often added to updates without regard
to the increased risk these permissions pose (7, 9, 24].

Previous approaches that generated reproducible crash test-
cases have relied on two different methods to obtain the statically-
registered app components: parsing the apps’ manifest directly
[12, 22, 27, 29] or relying on the OS package manager [2, 20]. Un-
fortunately, these approaches inherently suffer from poor inter-app
coverage as they overlook dynamically-registered components in
apps and in the Android OS. As shown in Section 4, more than
62% of system crash DoS vulnerabilities detected by Daze in the 32
devices resided in dynamically-registered components. Sasnauskas
et al. [22] compared null-intent fuzzing to data fuzzing of intents
and discovered that data fuzzing only yielded a 1% increase in code
coverage in their evaluation. Ye et al. [27] focused exclusively on
fuzzing the category, data, and action fields of activity components.
Yang et al. [26] created a system to detect privilege escalation events.
Our approach overcomes key limitations of the other approaches
for null-intent testing in regard to completeness (covering all types
of app components), automation (e.g., clearing the crash dialogue
and restarting the app), and settings and file system monitoring.
Maji et al. [20] proposed a semi-manual approach to test exported
app activities on three specific versions of Android.

Recently, Garcia et al. [12] created LetterBomb to detect inter-app
vulnerabilities. They used complex backward data-flow analysis al-
gorithms to discover DoS vulnerabilities due to missing null-checks
when accessing intent fields, then dynamically generated intents to
see if the discovered vulnerabilities were indeed exploitable. They
tested on 10,000 apps and discovered only 104 exploitable DoS vul-
nerabilities, taking three minutes per app on average. Similarly,
Hay et al. [15] proposed IntentDroid as a full data-fuzzing approach
to detect inter-app vulnerabilities. IntentDroid identified 31 intent-
related DoS vulnerabilities in 55 apps among the top-rated apps on
Google Play in 2014, taking an average of 25 minutes per app. The
work in [12] also compared LetterBomb to IntentDroid and found
that IntentDroid detected only two thirds of the DoS vulnerabilities
detected by LetterBomb in a sample of 40 apps. In contrast, Daze
detected 219 vulnerabilities for the oldest versions in our dataset
for the same 55 vulnerable apps reported in [15] compared to only
108 detected by IntentDroid (presuming IntentDroid successfully
detected all java and native crashes in Table 1 in [15]).

Although we did not measure code coverage during testing
(mainly since collecting coverage metrics from stock firmware im-
ages and apps requires tampering with their packaged code and re-
signing them, which could influence the outcomes of our study), we
argue that the main difficulty of inter-app data-fuzzing on Android
is that Android enforces type-safety on intent fields by returning a
null-like value when a field is accessed using the wrong value type.
This type-safe access means that data-fuzzing approaches must
use only correct value types in order to achieve any meaningful
coverage beyond null-fuzzing. However, the overhead incurred by
data-fuzzing prohibits large-scale vetting due to the large input
space and complex algorithms involved. Daze differs from these
solutions in that it approaches the problem directly by null-fuzzing
exported components, allowing it to discover significantly more
vulnerabilities in significantly less time: 14,413 exploitable vulner-
abilities in 18,583 apps, taking two minutes per app on average.

9 CONCLUSION

We presented Daze, an automated system to identify fatal excep-
tions within Android apps and the Android OS. Using Daze, we
discovered that more than 50% of the current Android devices are
vulnerable to a persistent system crash DoS attack, enabled by inad-
equate exception handling in the Android base code. Daze created
reproducible test cases for over 20,000 fatal errors within the three
datasets spanning 13 months across 59 different versions of AOSP
from the smartphone and Android TV distributions. Furthermore,
our longitudinal analysis quantified the exposure period of fatal
exceptions in consecutive versions of apps. The results showed that
the majority of fatal exceptions in an app were inherited from the
previous app version and 20% of unpatched vulnerabilities have ex-
isted more than 100 days. Moreover, 10% of app components tested
were susceptible to attacks causing fatal crashes by an external app.
Going beyond DoS attacks, we discovered that system crashes fa-
cilitated data disclosure vulnerabilities on certain popular Android
devices. Lastly, we presented a novel and universal attack to force
any Android device to encounter a system crash by exhausting its
heap memory using standard APIs from a zero-permission app.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd Zhiyun Qian
for their insightful comments that helped improve this paper. We
thank Dimitris Tsiounis for providing access to a repository of apps.

REFERENCES

[1] Gearing Up for a Flagship-Filled Holiday Quarter, Smartphone Shipments Grew
2.7% Year-Over-Year in the Third Quarter, According to IDC. Retrieved November
7, 2017 from https://www.idc.com/getdoc.jsp?containerld=prUs43193517.

[2] Intent Fuzzer. Retrieved June 8, 2017 from https://www.nccgroup.trust/us/abou
t-us/resources/intent-fuzzer/.

[3] Smartphone OS Market Share, 2017 Q1. Retrieved October 2, 2017 from https:
//www.idc.com/promo/smartphone-market-share/os.

[4] US. Consumers Time-Spent on Mobile Crosses five Hours a Day. Retrieved June 8,
2017 from http://flurrymobile.tumblr.com/post/157921590345/us- consumers- tim
e-spent-on-mobile-crosses-5.

[5] Yousra Aafer, Nan Zhang, Zhongwen Zhang, Xiao Zhang, Kai Chen, XiaoFeng

Wang, Xiaoyong Zhou, Wenliang Du, and Michael Grace. 2015. Hare hunting in

the wild Android: A study on the threat of hanging attribute references. In ACM

SIGSAC Conference on Computer and Communications Security. ACM.

Alessandro Armando, Alessio Merlo, Mauro Migliardi, and Luca Verderame. 2012.

Would you mind forking this process? A denial of service attack on Android (and

some countermeasures). In IFIP International Information Security Conference.

l6

=

Theodore Book, Adam Pridgen, and Dan S Wallach. 2013. Longitudinal analysis
of android ad library permissions. arXiv preprint arXiv:1303.0857 (2013).

Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza
Sadeghi, and Bhargava Shastry. 2012. Towards Taming Privilege-Escalation
Attacks on Android.. In Network and Distributed System Security Symposium.
Bogdan Carbunar and Rahul Potharaju. 2015. A longitudinal study of the Google
app market. In Advances in Social Networks Analysis and Mining (ASONAM), 2015
IEEE/ACM International Conference on. IEEE, 242-249.

Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011. An-
alyzing inter-application communication in Android. In international conference
on mobile systems, applications, and services. ACM.

Adrienne Porter Felt, Helen] Wang, Alexander Moshchuk, Steve Hanna, and
Erika Chin. 2011. Permission Re-Delegation: Attacks and Defenses.. In USENIX
Security Symposium, Vol. 30.

Joshua Garcia, Mahmoud Hammad, Negar Ghorbani, and Sam Malek. 2017. Au-
tomatic Generation of Inter-component Communication Exploits for Android
Applications. In Proceedings of the 2017 11th Joint Meeting on Foundations of Soft-
ware Engineering (ESEC/FSE 2017). ACM, New York, NY, USA, 661-671.

Michael C Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. 2012. Systematic
Detection of Capability Leaks in Stock Android Smartphones.. In Network and
Distributed System Security Symposium, Vol. 14.

Norm Hardy. 1988. The Confused Deputy: (or why capabilities might have been
invented). ACM SIGOPS Operating Systems Review 22, 4 (1988).

Roee Hay, Omer Tripp, and Marco Pistoia. 2015. Dynamic detection of inter-
application communication vulnerabilities in Android. In International Sympo-
sium on Software Testing and Analysis. ACM.

Heqing Huang, Sencun Zhu, Kai Chen, and Peng Liu. 2015. From system services
freezing to system server shutdown in Android: All you need is a loop in an app.
In ACM SIGSAC Conference on Computer and Communications Security.

Ryan Johnson, Mohamed Elsabagh, and Angelos Stavrou. 2016. Why Software
DoS Is Hard to Fix: Denying Access in Embedded Android Platforms. In Interna-
tional Conference on Applied Cryptography and Network Security.

Ryan Johnson, Mohamed Elsabagh, Angelos Stavrou, and Vincent Sritapan. 2015.
Targeted DoS on Android: How to disable Android in 10 seconds or less. In 10th
International Conference on Malicious and Unwanted Software (MALWARE).
Anna Lucia Spear King, Alexandre Martins Valenca, Adriana Cardoso Silva, Fed-
erica Sancassiani, Sergio Machado, and Antonio Egidio Nardi. 2014. AAIJNomo-
phobiadAl: Impact of cell phone use interfering with symptoms and emotions of
individuals with panic disorder compared with a control group. Clinical Practice
& Epidemiology in Mental Health 10, 1 (2014).

Amiya K Maji, Fahad A Arshad, Saurabh Bagchi, and Jan S Rellermeyer. 2012. An
empirical study of the robustness of inter-component communication in Android.
In International Conference on Dependable Systems and Networks (DSN). IEEE.
Patrick Mutchler, Yeganeh Safaei, Adam Doupé, and John Mitchell. 2016. Target
fragmentation in Android apps. In Security and Privacy Workshops (SPW). IEEE.
Raimondas Sasnauskas and John Regehr. 2014. Intent fuzzer: Crafting intents of
death. In joint International Workshop on Dynamic Analysis (WODA) and Soft-
ware and System Performance Testing, Debugging, and Analytics (PERTEA). ACM.
Marie-Pierre Tavolacci, G Meyrignac, L Richard, P Dechelotte, and J Ladner. 2015.
Problematic use of mobile phone and nomophobia among French college students.
The European Journal of Public Health 25, suppl 3 (2015).

Vincent F Taylor and Ivan Martinovic. 2017. To Update or Not to Update: In-
sights From a Two-Year Study of Android App Evolution. In Asia Conference on
Computer and Communications Security (ASIA CCS ’17). ACM, 45-57.

Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. 2013. The
impact of vendor customizations on Android security. In ACM SIGSAC Conference
on Computer and Communications Security.

Kun Yang, Jianwei Zhuge, Yongke Wang, Lujue Zhou, and Haixin Duan. 2014.
IntentFuzzer: Detecting Capability Leaks of Android Applications. In Asia Con-
ference on Computer and Communications Security (ASIA CCS ’14). ACM.

Hui Ye, Shaoyin Cheng, Lanbo Zhang, and Fan Jiang. 2013. Droidfuzzer: Fuzzing
the Android apps with intent-filter tag. In International Conference on Advances
in Mobile Computing & Multimedia. ACM.

Caglar Yildirim, Evren Sumuer, Miige Adnan, and Soner Yildirim. 2016. A growing
fear: Prevalence of nomophobia among Turkish college students. Information
Development 32, 5 (2016).

Aimin Zhang, Yi He, and Yong Jiang. CrashFuzzer: Detecting input process-
ing related crash bugs in Android applications. In Performance Computing and
Communications Conference (IPCCC), 2016 IEEE 35th International.

Xiaoyong Zhou, Yeonjoon Lee, Nan Zhang, Muhammad Naveed, and XiaoFeng
Wang. 2014. The peril of fragmentation: Security hazards in Android device
driver customizations. In 2014 IEEE Symposium on Security and Privacy (SP).

https://www.idc.com/getdoc.jsp?containerId=prUS43193517
https://www.nccgroup.trust/us/about-us/resources/intent-fuzzer/
https://www.nccgroup.trust/us/about-us/resources/intent-fuzzer/
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
http://flurrymobile.tumblr.com/post/157921590345/us-consumers-time-spent-on-mobile-crosses-5
http://flurrymobile.tumblr.com/post/157921590345/us-consumers-time-spent-on-mobile-crosses-5

APPENDIX
A FAULT PROPAGATION

We have witnessed some cases where testing an app component will
result in the analysis app getting killed. If this happens five times,
the component is skipped. The skipping of an app component is
fairly uncommon, except with content providers that crash during
testing. Of the total of the 143,790 tested components in the 18,583,
only 105 components needed to be skipped to due the analysis app
being terminated. We manually examined the logs to determine
the cause of the Daze being terminated. This was due to crashing
content providers, apps killing background processes, and apps
creating the conditions necessary to activate the Low Memory
Killer module which terminates processes to free memory. There
may be additional faults in the components exported by the syst
em_server process that can be found by additional fuzzing of the
inputs in intent objects. Our analysis can be extended to provide
a more complete analysis using static analysis to determine the
key names and value types stored in intents to provide aid with
the fuzzing of inputs. Daze can be configured to propagate content
provider faults into calling apps by exporting a content provider
that throws a null pointer exception when queried. Therefore, if
the SQLite operation on the client app side is not caught (i.e., not
within a try-catch block), the client app will itself crash.

B APPS DATASET FIDELITY

Our reported exposure measurements for the 18k dataset might
be conservative (under-approximations) in some cases due to po-
tentially missing versions of apps that were updated outside our
market sampling interval. Compared to the version updates history
on AppBrain.com, we found that 119 apps had two to three missing
updates between the last vulnerable version and the fixed version in
our dataset. This may lead to under-approximation of the number
of consecutively vulnerable versions and the exposure time win-
dow if any of these missing versions were still vulnerable. Though
we were unable to find download links for these missing versions,
these 119 apps comprised about 30% of fixed vulnerabilities that
persisted in a single app version in our dataset (total 50$ of all fixed
vulnerabilities existed in a single app version; see Figure 5) and if
we assume an equal probability that one of the missing versions
were still vulnerable, that would drop the percentage of fixed vul-
nerabilities existing in only one app version from 56% to around
26%, and the difference would be redistributed over vulnerabilities
that existed in two and three consecutively vulnerable versions.

C UNTESTED ANDROID PLATFORMS

We have not experimented with custom Android platforms such as
Android Auto, Android Wear, and Android Things devices mainly
due to the lack of any commercial versions of these devices that
could be re-flashed with different versions of the OS. These plat-
forms could very well be as vulnerable as, or even more so than,
phones and tables. For instance, while tinkering with a Moto 360
1st generation watch, we found that it has the vulnerable Forwar
dIntentToUserOwner activity that immediately crashed it when
called without an action string. Inspecting these custom Android
platforms remains an open research area.

D RESULTS BREAKDOWN

Figure D.1: Dialog box for an app crash, taking away the in-
put focus from underlying GUI elements.

] Vendor [AOSP

Alcatel A30
Alcatel A30 Plus
Amazon Fire 7 Inch Tablet
Amazon Fire TV Stick 2
BLU Advance 5.0
BLU Grand M
BLU Grand XL A
BLU R1 HD
Cubot X16S -
Doogee X5
Figo Atrium 5.5
Figo Virtue 4.0
Google Pixel
Juning TV Box
Juning Z8
Kata C2
Leagoo Z5C
LG Phoenix 2 -
NPOLE Tablet -
Nvidia Shield Android TV +
Plum Axe Plus 2
Plum Compass
RCA Q1 A
RCA Voyager Tablet 2
Samsung Galaxy S5 -
Samsung Galaxy S6 Edge
Samsung S8+ A
Sony Bravia Android TV -
Ulefone Power 2.0 -
Xiaomi Redmi 4 -
Yuntab -
ZTE Maven 2

i

il

o
N}
=)

40 60 80

=
=1
=}

% of vunlerabilities

Figure D.2: Attribution of device vulnerabilities to AOSP or
vendor customization.

Table D.1: Discovered components by type that will trigger a
system crash DoS vulnerability in common Android devices.

Type System Crash Instances Cause
Receiver 34 Vendor
Activity 22 AOSP
Receiver 6 AOSP
Service 1 Vendor
Provider 1 Vendor

Table D.2: Broadcast actions causing a system crash for
AOSP Android TV.

Vulnerable
Broadcast Action TV Version
5x 6x 7.0 8.0
android.bluetooth.input.profile.action. HANDSHAKE o o
android.bluetooth.input.profile.action.REPORT ° o
SIM_STATE_CHANGED' .
EMERGENCY_CALLBACK_MODE_CHANGED'" e o

T Actions in the default android.intent.action scope.

Table D.3: Exceptions in the top 300 Google Play apps.

Exception Name Freq.
java.lang NullPointerException 237
java.lang.ClassNotFoundException
java.lang Illegal ArgumentException
java.lang.ClassCastException

W
S

java.lang IllegalStateException

java.lang RuntimeException
android.util.SuperNotCalledException
java.lang.SecurityException
org.xmlpull.vl.XmlPullParserException
Signal 11 (SIGSEGV)
java.lang.UnsatisfiedLinkError
java.io.FileNotFoundException
android.view.InflateException
android.os.FileUriExposedException
TOTAL

I LN TSI N N RS Y NS |

w
iy
(=]

Table D.4: Exceptions in the 18K apps dataset.

Exception Name Freq.
javalang.NullPointerException 10,862
android.util.SuperNotCalledException 650
javalang.ClassNotFoundException 583
java.lang.NoClassDefFoundError 492
javalang Illegal ArgumentException 322
java.lang RuntimeException 252
javalang IllegalStateException 211
javalang.IndexOutOfBoundsException 161
javalang.UnsatisfiedLinkError 140
java.lang.SecurityException 126
java.lang.ClassCastException 83
content provider crash 82
android.content.res.Resources$NotFoundException 63
java.lang. NumberFormatException 52
javalang.InternalError 46
java.lang.UnsupportedOperationException 42
android.content. ActivityNotFoundException 35
android.view.WindowManager$BadTokenException 29
java.lang.ArrayIndexOutOfBoundsException 24
android.database.CursorIndexOutOfBoundsException 24
android.database.sqlite.SQLiteException 16
java.lang InstantiationException 15
java.lang.NoSuchFieldError 14
javalang.StringIndexOutOfBoundsException 12
android.util. AndroidRuntimeException 10

javalang.AssertionError

android.content.ReceiverCallNotAllowedException

java.security.InvalidParameterException

android.view.InflateException

java.lang.NoSuchMethodError

javalang Illegal AccessException

java.util. MissingFormatArgumentException

java.io.FileNotFoundException

android.view.ViewRootImpl$CalledFromWrongThreadException

signal 6 (SIGABRT)

javalang.AbstractMethodError

android.runtime.JavaProxyThrowable

javalang ExceptionInInitializerError

signal 11 (SIGSEGV)

org.json.JSONException

javalang . VerifyError

javalang.NoSuchFieldException

javalang IncompatibleClassChangeError

javalang Illegal AccessError

java.lang.Exception

javalang.ArithmeticException

android.support.v4.app.SuperNotCalledException

android.database.sqlite.SQLiteCantOpenDatabaseException

android.content.pm.PackageManager$NameNotFoundException

android.app.RemoteServiceException

android.app.Fragment$InstantiationException

Ll Bl el Bl el B B Bl B I B B B B O B NGRS N G ROV R ROV I OLY By T S B BN | el IiNe]

TOTAL

14,413

Table D.5: Exceptions detected by Daze for full device testing.

Device

50111

3 12 28 613 3 1

4 12 29

6
8
16

131

Alcatel A30

3112

513 4 1 2

125

Alcatel A30 Plus

3

61

Amazon Fire 7 Inch Tablet

17

Amazon Fire TV Stick 2nd Gen

BLU Advance 5.0
BLU Grand M

1122

31213

3

4

74 6 13

98
97

313 3 1

3 13 21

6
4
4
5

8

BLU Grand XL
BLU R1 HD

32210 2 4

14

114 11 10
117 16 16
105 17 13

Cubot X16S
Doogee X5

4

76 15 11

121

Figo Atrium 5.5

13

8

Figo Virtue 4.0

18 4 6 2 11 1
41313
4121

9
5

82

Google Pixel
Juning Z8

1112

4

113 18 13

56

13

8

Juning TV Box

Kata C2

4

138 20 14 4

61

10

Leagoo Z5C

514

5

6

181 29 11

36
74

LG Phoenix 2

NPOLE Tablet

Nvidia Shield Android TV

Plum Axe Plus 2

31310 2 11

4

9 3 11

102 26
75

Plum Compass
RCA Q1

4

4
3
3

118 18 13

89 16 17
118 36 11

157

RCA Voyager Tablet 2
Samsung Galaxy S5

15
18

1

511118 1

14

Samsung Galaxy S6 Edge

Samsung S8+

74
115

Sony Bravia Android TV
Ulefone Power 2.0
Xiaomi Redmi 4

Yuntab

3

2

413 3 2 2
7 2 33

2 14 19
3

10

97

6 12

119 22

18157 5 20 14 3 4 31122

5

168 10 12
3,114 304 299 270 210 178 167 7573 47 4343343018 181614 5 2 2 2 1 1 1 1 1 164 1 1

8

ZTE Maven 2
TOTAL

	Abstract
	1 Introduction
	2 Background
	2.1 Accessing App Components
	2.2 Errors of Omission

	3 Overview of Daze
	3.1 Identifying Statically Registered Components
	3.2 Identifying Dynamically-Registered Broadcast Receivers
	3.3 Testing Intent-Accessible Components
	3.4 Testing Content Providers
	3.5 Monitoring System State

	4 Study 1: Device Evaluation
	4.1 App Crash Vulnerabilities
	4.2 System Crash Vulnerabilities
	4.3 Privilege Escalation Vulnerabilities
	4.4 Data Disclosure Vulnerabilities
	4.5 Analysis Time

	5 Study 2: Google Play App Testing
	5.1 Longitudinal Vulnerability Analysis
	5.2 300 Most Popular Free Apps on Google Play
	5.3 App Processing Overhead

	6 Study 3: Stability of AOSP Builds
	6.1 DoS on AOSP Android 5.1 to Pre-7.0
	6.2 DoS on AOSP Android TV 5.0 to 8.0

	7 A Generic Android DoS Attack
	8 Comparison to Prior Work
	9 Conclusion
	References
	A Fault Propagation
	B Apps Dataset Fidelity
	C Untested Android Platforms
	D Results Breakdown

