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Abstract—Android markets have grown both in size and
diversity, offering apps that are localized or curated for specific
use cases. It is not uncommon for users to be unaware of the
exact app version or name they should be installing. This has
given rise to the threat of app cloning where adversaries copy the
package of an app, minimally modify its code, and redistribute
the clone on the market to gain a monetary advantage or to
distribute malicious payloads. Existing clone detection methods
use static signatures that can be evaded using control- and
data-flow obfuscation. Moreover, many approaches do not scale
with the number of apps, code size, and complexity, leading
to prohibitive detection time requirements. In this paper, we
introduce Dexsim , a dynamic analysis based system to accurately
index apps and identify bytecode similarities. We propose a novel
bytecode indexing and matching algorithm that employs concepts
from forced execution and LZ78 compression trees, and scales
linearly with the number and size of apps. Our experiments on
28k cloned benign and malicious apps showed that Dexsim is
both scalable and resilient to obfuscation, ferreting out clones
within 8 ms pair-wise on average with at least 90% accuracy.

Index Terms—Android Vetting, Clone Detection, Forced Exe-
cution, Compression Trees, Malware Classification

I. INTRODUCTION

The market share of Android devices has expanded dra-
matically over the past few years: as of 2016, Android is the
dominant mobile platform with a share of more than 86% of
the world market [1]. Android applications (apps, for short)
are distributed via an official market, Google Play, and various
third-party markets where users can download and install
apps. Android developers typically profit from apps either
via paid apps or by monetizing free apps using advertisements,
subscriptions, and premium features. Unfortunately, Android
apps are distributed in an open and easily modifiable format that
enables adversaries to clone and redistribute them with little
effort. This makes Android apps lucrative targets for plagiarism
and piracy, also known as app repackaging or cloning.

There have been considerable efforts to prevent or detect
app cloning [2]–[14]. However, the majority of the techniques
did not consider the impact of obfuscation on their detection
capability. This is especially important since advanced code
obfuscation techniques for Android apps are widely accessible
to hinder reverse engineering attempts. Recent studies have
shown that applying obfuscation techniques enabled clones to
evade detection [15]–[17] primarily due to the fact that static
analysis approaches cannot resolve runtime code constructs
or unroll obfuscated code. Several clone detection techniques

assume 3rd party libraries were filtered out from the app code
before the analysis which is unrealistic in practice [15]. Other
techniques assume GUI structure and hierarchies cannot be
obfuscated, an assumption that has been invalidated in recent
work [14]. Moreover, advanced detection methods such as
graph isomorphism based approaches [18]–[20] do not scale
with the number or size of apps, incurring prohibitive detection
time that prevents practical deployment.

In this paper, we propose a novel system for exposing
bytecode similarities in an efficient, accurate, and resilient
way. Our approach uses dynamic analysis and forced path
execution to characterize code execution even in the presence
of heavy obfuscation. The proposed approach does not require
whitelisting of libraries nor is it affected by changes in resource
files and GUI structure. Dexsim is highly parallelizable, making
it suitable for large-scale analysis that is linear in the number
of apps. It operates by directly finding the most similar apps in
its database to a submitted app. To achieve this, it extracts code
patterns from the bytecode trace of an app by dynamically
forcing execution through all components in the app. It then
efficiently indexes the apps and their traces into a database
of depth-bounded LZ78 [21] prediction trees (one tree of
probability assignments per app).

Dexsim quickly determines if an incoming app is a clone and
finds the nearest apps in its database to the incoming app using
a novel similarity measure based on the traces of the incoming
app and the statistical properties of the prediction trees in its
database. Our approach is designed based on the following key
insights: a) A cloned app produces similar dynamic bytecode
traces to its source (original) app, even if the clone’s static
control-flow graph (CFG) was obfuscated, in order for the
app’s functionality to be reserved. b) Traces from a clone shall
have a significant number of bytecode subsequences that can
be highly compressed using the same probability assignments
in the compression tree of the traces from the source app. §III
discusses the technical detail of the proposed system.

We evaluated a prototype of Dexsim against advanced control
and data flow obfuscation (see §IV) and investigated its ability
to identify malware families. Dexsim achieved high accuracy:
at least 96% with single obfuscation; and at least 90% with
multiple obfuscations applied in serial on the same app. It
correctly identified malware families seen in the wild with at
least 97% accuracy. It also incurred less than 8 ms detection
time per app-pairs, allowing for large-scale deployment as
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detection time scales linearly in the number of indexed apps.

II. BACKGROUND AND THREAT MODEL

Android apps are distributed in the Android Application
Package (APK) format. Each APK file contains bytecode
compiled into a Dalvik Executable (DEX) file, along with
resource files (e.g., images, sounds) and a manifest file
(AndroidManifest.xml) that lists the app package name, version
number, used permissions, and app components. The DEX file
is the input to the on-device Android runtime (either Dalvik or
ART) and it contains compiled Dalvik bytecode for all classes
used by the app. Native C/C++ components are packaged
separately from the DEX executable.

Developers must sign an app with a private key before
publishing it. However, due to the portable and open format
of APK files, several tools exist to manipulate Android
apps postmortem, i.e., after the app has been compiled and
distributed. This makes it very easy for malicious actors to
plagiarize (clone) or inject malicious behavior into benign
apps, by unpacking an app, modifying its meta information
or bytecode, and then repackaging it into a new APK and
redistributing it to the market, completely without access to
the app’s original source code.

Threat Model: The aim of this work is to detect apps that
share a nontrivial amount of code (app clones). We assume an
adversarial setup where an app’s meta data, such as developer
and package names, are unavailable or cannot be trusted. We
detect clones based on bytecode alone without using GUI
resources or source code. We assume side information, such
as debug symbols and method names, are stripped from the
bytecode. We assume the apps can be obfuscated at both the
control-flow level (e.g., obfuscated conditional statements) and
data level (e.g., obfuscated identifiers and literals). We do not
utilize data constructs (e.g., string literals) in detection since
they are easily modifiable by adversaries.

We directly work with Android apps compiled and assembled
into their final DEX executable (classes.dex) in an APK file.
DEX is the file format of Android executable bytecode that
gets loaded and executed by the ART (previously Dalvik)
runtime virtual machine on Android devices. Our system uses
its own DEX forced execution engine to force execution of
apps bytecode and runs standalone. It currently ignores native
code shared objects (.so files) which we leave for future work.1

III. CLONE DETECTION SYSTEM

Figure 1 shows the workflow of our system. It operates in
four phases: 1) common preprocessing, 2) trace collection, 3)
indexing, and 4) detection. In the following, we discuss each
phase in depth and analyze the detection time complexity.

1Native code is native platform-specific assembly compiled into a shared
object (.so file) and invoked from bytecode via the Java Native Interface (JNI).
It was estimated that only about 8% – 12% of Android apps use native code,
mainly for fast access to I/O and graphics extensions [6], [22].
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Fig. 1. An overview of Dexsim which works in two phases: First, an indexing
phase to build a database of LZ78 trees of bytecode traces. Second, a detection
phase that finds the nearest trees in the database to an incoming app.

A. Preprocessing

Dexsim starts by unpacking the incoming app and extracting
its DEX and manifest file. It then extracts all components
declared in the manifest file and disassembles the DEX file
into Smali [23] which is a human-readable intermediate repre-
sentation (IR) of Dalvik bytecode. This makes the bytecode
easier to process by later stages of the analysis. It then statically
analyzes the bytecode and extracts all possible entry points,
such as activities, services, and broadcast receivers, in case
the manifest file was corrupt or incomplete. We define an
entry point as an app component that can result in full or
partial execution of the app via direct (user action) or indirect
(inter-process communication) invocation.

B. Forced Execution & Trace Collection

For each app entry point, Dexsim executes all control-flow
paths rooted at the entry point and records traces of the executed
bytecode down all control flow paths. It then encodes the
traces as streams of bytes, where each byte corresponds to
one DEX opcode (a value in [0...255]). We developed a forced
path execution [24], [25] emulation engine that force executes
each app’s component by starting at the component class
constructor and initiation methods (i.e., onCreate, onStart, or
onReceive). We also force execution down component life cycle,
UI listeners, and callback methods. The execution of different
paths through a component is modeled using a graph that
encodes all possible control transfers that can be taken within
the component. The nodes in the graph represent conditional
statements that alter the control flow. The engine iteratively
forces the execution of all prime paths in the graph: if execution
traverses a path that partially overlaps with another path that
has already been traversed then the reference to the current
node will be moved along already established nodes in until
the paths diverge. We limited (in)direct recursion and loops to
a single iteration. Figure 2 shows an example of a dynamic
CFG and bytecode trace generated by the engine and execution
paths that static analysis solutions would not be able to follow,
e.g., the actual target of the virtual invocation marked by “*”
in the figure can only be resolved dynamically.

We emulated the execution of the majority of the Android
API. We built a portion of the Android API from the Android
Open Source Project (AOSP) code, including all Android



Fig. 2. Sample dynamic CFG and the corresponding trace. Numbers between
brackets are the DEX opcode values. Solid lines are direct (static) control
flow. Dashed lines are indirect (dynamic) control flow resolved by the engine.

callbacks for Activity, Service, Content Provider, and Broadcast
Receiver components, all Android callbacks identified in the
EdgeMiner [26] dataset, and callbacks introduced in recent
Android versions up till version 7.1.

To guarantee unbiased execution, we split the allotted analy-
sis time among components in proportion to each component’s
bytecode length (the number of bytecode statements in the
component). In our preliminary experiments, we empirically
found that a time limit of 30 s of forced execution offers a
reasonable balance between accuracy and detection time for
practical purposes. We plan on systematically studying this
trade-off in a future work.

C. App Bytecode Indexing

The output from the forced execution phase is a set of traces
T = {Ti}, where each Ti is a forced path execution bytecode
trace of component i in the app through all executed paths.
Dexsim splits T into smaller non-overlapping chunks using
a running window of a fixed size w. It then computes the
LZ78 [27] prediction tree of T and stores the app identifier
(the app unique package name) and the LZ78 dictionary in a
database for later retrieval. The window size w influences the
LZ78 dictionary size as well as the detection accuracy as w
controls the maximum length of a pattern that the prediction
tree can learn. In the following, we briefly discuss how the
LZ78 prediction trees are constructed and their main usage in
prediction and detection.

Of particular interest to us is the prediction component of
the LZ78 algorithm, which utilizes the core LZ78 parsing
algorithm for making predictions [21]. Parsing in LZ78 works
as follows. Given a string q constructed from some alphabet
Σ (a finite set of symbols) LZ78 scans q into adjacent non-
overlapping substrings. The substrings are stored in an efficient
compression tree structure D, often known as the “dictionary.”2

Each time a substring s′ is parsed, the algorithm inserts s′ to
D if s′ is not already in D and it extends any substring s in
D, i.e., s′ = s||σ where s′ /∈D, s∈D and σ∈Σ. This process
continues until q is consumed.

LZ78 prediction [21] builds on this by annotating D with
empirical probabilities from the counts of child substrings,
producing a prediction tree. A child node s′∈D is a parsed

2Dictionaries always contain the empty string $.

Fig. 3. LZ78 annotated compression tree produced from the trace: 71 54 6E
54 33 54 12 63 0F. Σ is the DEX opcodes 0x00 to 0xFF (|Σ| = 256).
Each node in the tree contains both an opcode and a count of all child nodes.
Each internal node has all |Σ| children. For computing PD(54 71 6E 0F),
the following path is traversed: $ → 54 → 71 → $ → 6E → 0F, giving a
probability of 766

1531
1

766
511
1531

256
511

= 256
1531∗1531 .

substring that extends another parent substring s∈D. Leaf
nodes correspond to substrings with no extensions. For an
alphabet Σ of size n, each node s ∈ D has n children and
n counters, one for each symbol σ∈Σ. The counter of a leaf
node is always set to 1 for the empty string. Figure 3 gives an
example of a trace compression tree. To compute the prediction
probability P (σ|s), i.e., a symbol σ∈Σ extends a string s, we
start from the root of D and traverse the tree according to s.
When s is fully consumed, P (σ|s) is computed as the counter
value corresponding to σ divided by the sum of all counters of
the current node. The prediction probability of s is given by:

PD(s) =

|s|∏
i=1

P (si|s1s2 . . . si−1), (1)

where si is symbol number i in s, and |s| is the length of s.
If a leaf node is reached before s was fully consumed,

Dexsim continues the traversal the root node of D. This
allows the sequences in D to “roll over” by distributing the
computation of the prediction probability over all sequences
in D, effectively countering control-flow alterations that may
modify the order of statements collected by forced execution.

D. Bytecode Similarity Detection
For an incoming app in the detection phase, Dexsim

processes the app, forces execution through it, and encodes
the traces into T . Then, for each LZ78 dictionary D in the
database, it computes a similarity score between T and D as
follows. For some trace ti in T , the prediction probability of
ti by D, i.e., PD(ti), represents the likelihood of reproducing
ti from D. That is to say, the log-loss − lgPD(ti) quantifies
the information loss endured in the reproduced trace from
D compared to the original ti. The quantity − lgPD(ti) also
measures the compression rate of the trace ti when using the
probability assignments in D. The smaller the log-loss, the
better the compression. By generalizing this, we can compute
a set H of normalized log-loss values for the subtraces in T :

H(T , D) =

{
− lgPD(ti)

|ti|
; i = 1 . . . |T |, ti ∈ T

}
. (2)



The dissimilarity score between T and D is the average
over H, i.e., the average normalized log-loss given by:

d(T , D) = E
[
H(T , D)

]
, (3)

where E[.] is the expectation function.
The incoming app is considered a clone if the dissimilarity

score is less than some threshold θ, determined on a per-app
basis as follows: For each indexed app, re-traverse the LZ78
dictionary of the app using the app’s own traces that were
used in building the dictionary, record the mean and standard
deviation of the normalized log loss over the app’s traces set,
and choose θ to two standard deviations above the mean. More
formally, for each app a in the database, we compute:

Ha = H(Ta, Da), (4)
θa = E[Ha] + 2σ[Ha], (5)

where Ta is the app’s traces set, Da is the app’s dictionary,
and σ[.] is the standard deviation function.

Alternatively, Dexsim can return the nearest k apps to the
incoming app by returning the apps corresponding to the least
k dissimilarity scores.

For convenience, a normalized relative similarity score
s(b, a) ∈ (0, 1] between an incoming app b and some app
a in the database can also be computed as:

s(b, a) = 1−
∣∣d(Ta, Da)− d(Tb, Da)

∣∣
max(d(Ta, Da), d(Tb, Da))

, (6)

where Ta and Tb are the traces sets for apps a and b, respectively,
and Da is the dictionary of app a. Note that d(Ta, Da) is
precomputed during the indexing stage. The quantity s(b, a)
also corresponds to the relative compressibility of the traces of
b and a, using the probability assignments in Da. The higher
the value of s(b, a) ∈ (0, 1] the higher the likelihood that the
bytecode sequences in b and a follow the distributions in Da.

Detection Time Complexity: The forced execution stage
on an incoming app a is time-bounded and can take at most
O(csa) where sa is the number of statements in the app. Each
dictionary is traversed in time O(|Ta|). Hence, for a database
of n apps, the complexity of computing the similarity score
between a and the n apps is O(|Ta|n). Since |Ta| ≤ s, where
s is the total number of statements in all the n apps, the full
app detection time reduces to O(cs). Hence, the total detection
complexity is O(n) in the number of apps n in the database.

IV. EVALUATION RESULTS

We evaluated Dexsim using the DEX clone detection
benchmarking framework presented in [16]. The framework
utilized SandMark [28], the state-of-the-art obfuscation utility.
SandMark heavily alters an app’s bytecode by inserting,
removing, and transposing bytecode constructs, and obfuscating
the app’s control and data flows. (This is a stronger setup
than typical naive repackaging techniques that only modify
a few lines of code in an app.) We also experimented with
repackaged Android malware variants captured in the wild as
concrete samples of malicious app clones.

We experimented with the following datasets:

1) BEN: a dataset of 3k unique benign apps.
2) BEN-O: 18k unique clones for the apps in BEN using a

single obfuscator per clone.
3) CTR: a dataset of the highest 20 benign apps in terms of

obfuscation rate.
4) CTR-O: 350 uniquely repackaged app clones for apps in

CTR using a single obfuscator per app.
5) CTR-OS: 510 clones using two and three obfuscators in

serial on the apps in CTR.
6) MAL: a dataset of 7k malware samples and repackaged

variants seen in the wild.
BEN consisted of the top 3000 apps by number of downloads

from Google Play in early 2017. We constructed BEN-O
by obfuscating all the apps in BEN as follows: For each
app in BEN, we produced several clones by applying single
obfuscation algorithms from SandMark, i.e., one clone per
each algorithm. This produced an average of 6 unique different
obfuscated clones per source app (see Table I for detail).3,4

We constructed the CTR and CTR-O datasets by selecting
the top 20 apps and their clones based on the number of
successful obfuscations. Further, we constructed the CTR-OS
dataset by obfuscating each app in CTR with the strongest
obfuscation algorithms applied in serial (up to 3 algorithms).
This gave a total of 450 obfuscated apps in the CTR-OS. We
use CTR, CTR-O and CTR-OS to provide insights on different
obfuscation algorithms and on the accuracy of Dexsim .

The malware dataset (MAL) consisted of 7,430 Android
malware samples provided by the VirusShare project [30].5

We collected the malware family labels by querying the
VirusTotal [31] service with the malware hashes from the
VirusShare dataset. We excluded samples that had generic
family labels (e.g., “Spyware”, “Downloader”, “PUA”, etc.),
no family labels, native code samples, J2ME samples, and
samples that failed parsing by Jar2dex.

We implemented Dexsim in Java and conducted all ex-
periments on an Intel(R) Xeon(R) X5550 16-cores 2.67GHz
machine with 72GB of RAM running Ubuntu 16.04.1.

A. Obfuscated Clones Identification Results

We used Dexsim to index all source apps in BEN then ran
it in detection mode on all obfuscated clones in BEN-O. For
each incoming clone in BEN-O, we configured Dexsim to
output both the detector decision and the list of source apps in
BEN sorted in ascending order by their dissimilarity score to
the incoming clone, i.e., a nearest neighbors list. An incoming
clone app is deemed matched if Dexsim detected it as clone
and returned its source app among the nearest k neighbors
for some value of k. Ideally, we would want to detect that a
clone is indeed a clone, and to return its corresponding source
app in BEN as the nearest neighbor, i.e., k = 1. We report

3Unless otherwise stated, we refer to the input app to an obfuscator as the
“source” app, and to the output repackaged obfuscated app as the “clone” app.

4SandMark and Jar2dex failed to process some apps, which was also
observed by prior studies [16], [29].

5The malware dataset can be downloaded from: https://archive.org/download/
virusshare malware collection 000/VirusShare Android 20140324.zip.
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Fig. 4. Detection accuracy of all clones in the BEN-O dataset against their
sources in the BEN dataset. w is the window size.

the detection accuracy as a function of the returned k nearest
neighbors in BEN of each clone in BEN-O. Specifically, we
compute the detection accuracy as: 100 ∗ (1− #unmatched clones

#all clones ).
Figure 4 shows the results. For the nearest neighbor case,

Dexsim achieved at least 97.9% detection accuracy for a trace
window size of 16 bytecodes. This increases to 98.8% for a
window size of 512 bytecodes. By looking at the nearest 2
neighbors, the accuracy further increases to 99.8 for a window
size of 16, and nearly 100% for a window size of 512.

Table I shows the average similarity score per clone type
and obfuscation technique. The higher the scores, the better
the resiliency against obfuscation. The scores were computed
between each clone app and its source app and averaged over
all clones of the same type. The results show that the proposed
approach is highly resilient to layout and data obfuscation,
maintaining at least 0.93 similarity between clones and sources.

Control-flow obfuscations had a relatively greater impact.
While for 10 out of the 14 control-flow obfuscators, Dexsim
achieved greater than 0.90 similarity, the following 4 obfus-
cators resulted in scores less than 0.90: Interleave Methods,
Method Merger, Opaque Branch Insertion, and Transparent
Branch Insertion. This is due to the heavily modified basic
blocks resulting from these transformations. Nevertheless, the
lowest score still conserves a high similarity at 0.87.

B. Serializing Multiple Obfuscation Algorithms

It is possible that attackers, in practice, apply multiple
obfuscation algorithms to the same clone in order to evade or
complicate detection. Hence, we also quantify the effectiveness
of Dexsim against clones obfuscated via serializing multiple
obfuscators. For this experiment, we focused on the strongest
obfuscation algorithms based on the scores from §IV-A: Inter-
leave Methods, Method Merge, Random Dead Code, Opaque
Branch Insertion, Branch Inverter, and Transparent Branch
Insertion. For these six algorithms, we produced clones of the
CTR dataset by serializing all possible permutations of length
up to three. We limited the number of serialized obfuscators to
three since serializing four or more obfuscators failed for all the
apps in CTR.6 We believe this is due to conflicts between the

6It took 52 min per app on average to apply three obfuscators in serial.

TABLE I
AVERAGE SIMILARITY SCORE OF CLONES IN THE BEN-O DATASET TO

THEIR SOURCES IN BEN. L, C, AND D REFER TO LAYOUT, CONTROL-FLOW,
AND DATA-FLOW OBFUSCATION, RESPECTIVELY.

Obfuscator Type #Clones Score
Constant Pool Reorderer L 936 0.99
Interleave Methods C 806 0.89
Block Marker C 936 0.95
Dynamic Inliner C 293 0.93
Method Merger C 936 0.87
Class Splitter C 469 0.94
Static Method Bodies C 933 0.93
Simple Opaque Predicates C 788 0.97
Random Dead Code C 936 0.91
Inliner C 324 0.95
Reorder Instructions C 181 0.98
Insert Opaque Predicates C 398 0.93
Opaque Branch Insertion C 294 0.89
Branch Inverter C 928 0.90
Trans. Branch Insertion C 731 0.88
Array Splitter D 375 0.96
Integer Array Splitter D 778 0.97
Overload Names D 590 0.98
False Refactor D 936 0.94
Rename Registers D 936 0.99
Publicize Fields D 936 0.98
Field Assignment D 936 0.93
Variable Reassigner D 296 0.94
Duplicate Registers D 936 0.98
Boolean Splitter D 930 0.95
Merge Local Integers D 934 0.99
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Fig. 5. Detection accuracy of all clones in the CTR-OS dataset against their
source counterparts in the CTR dataset.

obfuscators as observed by prior studies [16], [32]. Overall, we
produced 450 unique clones constituting the CTR-OS dataset:
150 clones with two obfuscators in serial and 300 clones with
three obfuscators in serial.

Figure 5 shows the detection accuracy using one, two, and
three obfuscators in serial. For k = 1, i.e., the nearest neighbor
to a clone is its source app, Dexsim achieved 96.8%, 92.5% and
90.1% for one, two and three obfuscators in serial, respectively.
For k = 8, this increases to at least 96% accuracy with three
obfuscators in serial. Overall, Dexsim showed strong resiliency
against serialized obfuscators.

Of all combinations, the lowest average similarity score
achieved was 0.84 using the sequence [Method Merger ⇒
Opaque Branch Insertion⇒ Branch Inverter]. Nevertheless, the
decay in detection accuracy was insignificant, as the detection
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Fig. 6. Family detection accuracy of all malware samples in the MAL dataset.

accuracy was at least 90% for an exact mach, and above
92% for two or more nearest neighbors. In general, Dexsim
conserved much higher similarity compared to prior work. For
instance, AndroGuard achieved only 0.26 to 0.33 similarity
when applying three (weaker) obfuscators in serial [16].

C. Malware Variants Identification Results

In this experiment, we indexed two malware samples selected
at random from each malware family (35 unique families in
total, excluding variants) in the MAL dataset. Then, we ran
Dexsim in detection mode on the remaining malware samples
(test samples). We configured Dexsim to output the nearest
neighbors list of each test sample and its family label, and
computed the detection accuracy as a function of the returned
k nearest families as: 100 ∗ (1 − #unmatched samples

#all samples ), where an
unmatched sample is a test malware sample family that was
not detected by Dexsim within the nearest k neighbors.7

Figure 6 shows the results. Dexsim achieved at least 97.5%
family identification accuracy. For the case where k = 1,
it flagged 163 malware samples with the wrong label. We
manually inspected these samples and found that they were
closely related variants of the family labels reported by
Dexsim (e.g., AndrKongFo-A and AndKongFo-D; AndrKmin-
A, AndrKmin-C, and AndrKmin-H). We also observed that
for these same variants there was no consensuses among the
antivirus products from VirusTotal on the family label.

D. False Positives

We used standard 5-fold cross validation to compute a
preliminary estimate of the False Positive Rate (FPR) of
Dexsim. We split the BEN dataset into five equally-sized
portions (600 apps each), used each four-out-of-five portions
for indexing and the one left out portion for testing. Some
false positives are expected since apps tend to share code, such
as SDKs, ad libraries, in-app payment libraries, and apps from
the same developer. Overall, the FPR ranged from 0.50% to
2.17%, averaging only 1.20% which is reasonable for vetting
purposes and lower than prior solutions (Andarwin 3.72% [6];
ViewDroid 4.70% [32]; DroidSIFT 5.15% [29]).

7A better strategy is to decide the family label based on label frequencies
of the nearest k neighbors (e.g., majority voting). We opted against this to
give a transparent evaluation of the detection power of Dexsim .

E. Overhead Results

The total detection time for apps in BEN-O (18,472 incoming
apps; 3k indexed apps from BEN) summed up to 2.41 hrs using
the maximum tree size (w = 512) or less than 6 ms per each
incoming-indexed app pairs. The average forced execution time
per app was 13 s, and it took 0.71 s on average to construct and
save each compression tree. This adds up to about 14 s indexing
time per app (11 hrs total for the 3k apps in BEN). The trace
window size (w) had a negligible impact on the processing time
which is expected since the overall trace length is invariant
of the trace window size. Note that the detection time scales
linearly with the number of indexed apps, and both indexing
and detection times can be directly reduced by distributing
the work on multiple servers (a reduction factor of k using k
executors). For instance, by extrapolating to 2,000,000 indexed
apps, we can estimate the detection time to be about 40 min
per app using a typical commercial-grade 80-core server, or
only 8 min per app using five servers.

V. DISCUSSION

A. Padding Attacks

Attackers could attempt to evade Dexsim by padding the
bytecode at the app level or at the component level. For instance,
attackers could iteratively merge apps into a single app, till
that resulting app evades detection. Likewise, attackers could
pad all components in an app with dummy instructions. The
idea is to insert enough padding till the resulting app does not
compress favorably using any of the probability assignments
in Dexsim’s database and evading detection. Padding attacks
require substantial effort on the part of the attacker to maintain
proper file structure and runtime behavior, and we are not aware
of any tools to automatically pad or merge Java or Android
apps. Nevertheless, it is straightforward to extend Dexsim to
thwart padding attacks by relaxing the asymmetry of the relative
similarity computation performed by Dexsim at the expense of
an extra O(n) detection time. In Equation (6), s(b, a) 6= s(a, b)
for any two apps a and b as s(b, a) computes the relative
similarity of b to a by computing the compressibility of the
traces of b using the dictionary generated from the traces of a.
For example, if b = x‖a, where x is an attacker-chosen padding
and ‖ is the concatenation operator, then s(x‖a, a) < s(a, a)
since it is in the attackers advantage to choose x that is likely
to poorly compress using the probability assignments in the
dictionary of a. On the other hand, s(a, x‖a) ≈ s(a, a) since
the dictionary of x‖a also contains the patterns in the traces
of a. Hence, a straightforward countermeasure is to instead
compute mutual similarity, i.e., s′(b, a) = min(s(b, a), s(a, b)),
and incur an additional O(n) for detection.

B. HTML Apps and Resource Files

Dexsim cannot execute code embedded in web views (e.g.,
embedded JavaScript) since the code behind web views is not
compiled into the bytecode of the app. This makes it impossible
to differentiate between different apps (not clones) that are
perhaps implemented entirely in a web view (e.g., HTML apps)
and other apps that only serve a single widget (e.g., the majority



TABLE II
COMPARISON OF PRIOR WORK AND Dexsim .

Solution
Based On

Resilience† Detection
Time‡

Detection
in n? AccuracyT2 T3 L V R O

String [34] # # #  G# # O(s) O(n) Low
Hash [2], [4] # # # G# G# # O(s) O(n) Low
Token [35] G# # #   # O(s) O(n) Medium
AST [36], [37]  # #   # O(s) O(n) High
PDG [18]–[20]   G#   # O(v2m2) O(n2) High
GUI [11], [32]    # G# G# O(v2m2) O(n2) Medium
Resources [12]–[14]    G# # G# O(r̄n) O(nlgn) Medium
PDG+Hash [6]  G# G# G#  # O(m̄n) O(nlgn) Medium
CFG [5], [9]   #   # O(cs) O(n) High
Dexsim       O(cs) O(n) High
† L stands for resilience to added or removed libraries. V stands for resilience

to view modifications. O stands for data and control flow obfuscation
resilience.  indicates good resilience, G# indicates partial resilience, and
# indicates poor resilience.
‡ Detection time of an incoming app against a database of n indexed apps.
c is a small number (c � n). m is the total number of methods in all
apps. m̄ is the average number of methods per app. r̄ is the average
number of resource files per app. v is the number of PDG nodes. s is the
total number of statements in all apps.

? Detection time for an incoming app in the number of indexed apps n.

of Android book apps). This also is a known limitation of GUI-
based detection solutions as the static GUI in JavaScript and
HTML apps is minimal, composed of only a web view and few
controls [15], [32]. Dexsim does not inspect individual resource
files that may be packaged with apps. Resource-similarity
solutions (e.g., [12], [13]) are complementary to this work.

VI. RELATED WORK

App clones have been generally categorized into four
types [3], [33]: T1) The cloned code has identical code
fragments, except for non-code variations such as changes
in whitespaces, comments and annotations; T2) In addition to
T1, the cloned code contains changes in identifiers, literals and
types; T3) In addition to T2, the cloned code has added or
removed code fragments; and, T4) In addition to T3, the cloned
code is re-implemented through different syntactic variants.
T1 clones are considered legacy as they minimally impact an
app’s bytecode. Control- an data-flow obfuscation fall under T4
clones. In fact, it is arguable that obfuscation is the only realistic
T4 cloning technique since attackers typically lack the incentive
and resources to fully reverse engineer and re-implement cloned
apps at a large scale. Several studies have suggested that T2,
T3, and T4 are prevalent on the Android market, posing a
serious threat to a healthy ecosystem [2], [3], [5], [10], [11],
[15]. Table II summarizes the comparison between Dexsim
and prior clone detection techniques. Prior techniques were: 1)
non-resilient to traditional cloning, obfuscation, libraries, and
GUI changes; or 2) non-scalable; or 3) inaccurate.

Google has a service called Google Bouncer for vetting
apps submitted to the Google Play market that analyzes each
submitted app for approximately five minutes. A study by
RiskIQ [38] found that malicious apps in the Google Play
store increased 388% between 2011 and 2013, yet the number
of apps removed by Bouncer dropped from 60% to 23% in
the same period. The capacity of Bouncer for detecting cloned

apps has not been studied and recent studies found that clones
are prevalent across Android markets [5], [10], [15].

Complementary to this work are solutions that detect clones
based on GUI similarities. ViewDroid [32] computed the
similarity of GUIs across apps using graph isomorphism on the
GUI layout. Similarly, [11] detected clones using GUI similarity
by encoding the GUI structure as a point in 3D similar to the
work of [5] to avoid nonscalability of graph isomorphism.
These solutions are based on the hypothesis that an app and its
clone are likely to have similar GUI structure. We argue that
this assumption is unrealistic against non-naive attackers. The
GUI of Android apps is implemented in plain XML and can be
easily restructured using equivalent android layout primitives,
obfuscated, concealed behind OpenGL surfaces, or dynamically
loaded/replaced at runtime, bypassing GUI-based analysis as
shown in [14], [39].

Solutions were proposed to detect clones using static and
dynamic resource analysis [12]–[14], [39]. The idea is that two
apps are likely clones if they share more than some threshold
of highly similar resource files (e.g., images and GUI strings).
The approaches can work statically by comparing resource
files from app packages at rest or dynamically by executing
apps on a device or an emulator and capturing resources at
runtime (e.g., taking screenshots of rendered views). Similar
to GUI-based solutions, static resource-based solutions can
be evaded by obfuscating or replacing resource file. Dynamic
resource-based solutions, while more resilient to static resource
and GUI changes, do not scale as they require actual execution
of apps, manual intervention, and can be fingerprinted and
bypassed by delaying suspicious behaviors [14], [40].

VII. CONCLUSION AND FUTURE WORK

We introduced Dexsim, a scalable and accurate Android
bytecode clone detection system highly resilient to control and
data obfuscation. Our preliminary results highly suggest the
effectiveness and resilience of our approach. In our experiments,
a prototype implementation of our approach detected obfuscated
clones with at least 98% accuracy. It also achieved more
than 97% accuracy for malware family classification. Dexsim
detected clones within 17 seconds on average, making it
suitable for large-scale market vetting.

In a future work, we plan on systemically measuring the
capacity of Dexsim by injecting foreign code at every possible
offset in a sizable app and quantifying the detection accuracy
as a function of the injected code length and the injection
distance. We also plan to quantify the relationship between
forced execution time, path coverage, and detection capacity,
which may enable practical assurance guarantees via multi-pass
detection by adjusting the execution time based on the desired
level of assurance for some apps without impacting the overall
average detection time of the system.
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