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Abstract. Recent advances in the hardware capabilities of mobile handheld devices 
have fostered the development of open source operating systems and a wealth of appli-
cations for mobile phones and table devices. This new generation of smart devices, in-
cluding iPhone and Google Android, are powerful enough to accomplish most of the user 
tasks previously requiring a personal computer. Moreover, mobile devices have access to 
Personally Identifiable Information (PII) including a full suite of location services, camera, 
microphone, among others. 
In this paper, we discuss the cyber threats that stem from these new smart device ca-
pabilities and the online application markets for mobile devices. These threats include 
malware, data exfiltration, exploitation through USB, and user and data tracking. We 
will present the ongoing GMUefforts to defend against or mitigate the impact of attacks 
against mobile devices. Our approaches involve analyzing the source code and bina-
ries of mobile applications, hardening the device by using Kernel-level network and data 
encryption, and controlling the communication mechanisms for synchronizing the user 
contents with computers and other phones. We will also explain the enhanced difficulties 
in dealing with these security issues when the end-goal is to deploy security-enhanced 
smart phones into military and tactical scenarios. The talk will conclude with a discussion 
of our current and future research directions.

1 Introduction 

The need for smaller, faster, portable devices and the ever increasing use of technology in our 
everyday life has driven the hardware manufacturers towards hand-held mobile devices that 
can offer a wide-range of functionality and with affordable cost. Newly developed smart gad-
get devices are produced by Apple, Google, Samsung, HTC are powerful enough to accomplish 
most of the tasks that previously required a personal computer. To make matters worse, unlike 
most desktop or laptop computers, they are almost always connected to the network. This newly 
acquired computing power gave a rise to plethora of applications that attempt to leverage the 
new hardware. These include but are not limited to Internet browsing, email, messaging, social 
networking, and GPS navigation.
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Fig.1. Overall Security Architecture for Android Devices: the primary design tenet is to prevent 
Data exfiltration or loss from unauthorized communications and malicious or badly designed 
mobile applications. A secondary goal was to produce a system that is transparent with small 
operating footprint in terms of power, CPU, and memory. 

 Unfortunately, although powerful and ubiquitous, researchers and practitioners 
have only recently been looking into the potential threats that stem from device and 
application attacks on mobile devices. In this paper, we describe the rationale behind 
some of our efforts [1–3] to secure the hardware and software on Android devices used 
in ad-versarial environments. Our efforts are data-centric and is multi-pronged as 
depicted in Figure 1. One of our primary goals was to provide transparent government grade 
data-at-rest encryption. An Encrypted File System (EncFS) for Android that employees NIST 
validated crypto algorithms was employed to meet this need. 
 On the other hand, we wanted to protect information that enters or leaves the mobile 
device and to prevent unauthorized data leaks. To achieve that, we employ cryptographic com-
munications to all the allowed paths including the USB communications and Internet connec-
tions. Finally, to prevent information leakage from untrusted applications, we developed offline 
security software testing algorithms for Android applications that enable us to weed-out po-
tentially unwanted program functionality that can be construed as malicious depending on the 
mission requirements. 
 All the above solutions, and especially encryption, however, come at a potentially 
signif-icant performance cost depending on the device we apply them on. In general, on mobile 
devices resources, including battery and processing power are severely constrained so it is 
important to maintain a small operating footprint. Throughout this paper, we show that our 
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proposed solutions as depicted in the overall architecture 1 are offering a reliable and secure 
platform for de-ployment of missing critical Android applications even when deployed in hostile 
or any other high risk environments. 

2 Background & Related Work 
This section provide some background information on the different research solutions that have 
been proposed over the last few years and illustrates the difficulties to provide an overarching 
approach to protecting Android mobile devices against a wide-range of attacks. 

Mobile OS Attacks and Defenses: The emerging threats brought by smart gadget 
devices and defense approaches are also well studied by the research community. The presen-
tation “Understanding Android’s Security Framework” [4] presents a high-level overview of the 
mechanisms required to develop secure applications within the Android development frame-
work. The tutorial contains the basics of building an Android application. However, the described 
interfaces must be carefully secured to defend against general malfeasance. They showed how 
Android’s security model aims to provide mechanisms for requisite protection of applications and 
critical smart phone functionality and present a number of best practices for secure application 
development within the environment. However, authors in [5] showed that this is not enough and 
that new semantically rich and application-centric policies have to be defined and enforced for 
Android. Moreover, in [6] the authors show how to establish trust and measure the integrity of 
application on mobile phone systems. TaintDroid [7] addresses the security issues with dynamic 
information flow and privacy on mobile handheld devices by tracking application behavior to de-
termine when privacysensitive information is leaked. This includes location, phone numbers and 
even SIM card identifiers, and to notify users in realtime. Their findings suggest that Android, and 
other phone operating systems, need to do more to monitor what third-party applications are 
doing when running in smart phones. Felt et al. [8] performed testing of Android 2.2.1 in order to 
identify the Android API calls, intents, and content providers which require a permission. 

Battery-borne Deny-of-Service: Racic and Kim et al. [9,10] studied malware that aims 
to deplete the power resources on the mobile devices. The provided solutions involve changes in 
the GSM telephony infrastructure. Their work shows that attacks were mainly carried out through 
the MMS/SMS interfaces on the device. In addition, in [11] the authors show that applications can 
simply overuse the WiFi, Bluetooth or display of the device and eventually cause a denial of ser-
vice attack. VirusMeter [12] models the power consumption and detects the malware based on 
power abnormality. However, the use of linear regression model with static weights for devices’ 
relative rate of battery consumption is a non-scalable approach [13]. 

Mobile Malware and Rootkits: Given the popularity of mobile application and their 
strong coupling relation with PII (Personal Identifiable Information), the spreading of mobile mal-
ware is becoming an alerting threats to military personnel as well as civilians. The evolution of 
mobile malware created a need to systematically characterize them from various aspects includ-
ing their installation methods, activation mechanisms as well as the nature of carried malicious 
payloads given a nearly two years time window [14]. Zhou et al. [15] developed a program to 
analyze the bytecode of an Android application to create behavioral footprints on Android appli-
cation and then use heuristics to detect classes of malware. 

Cloaker [16] is a non-persistent rootkit that does not alter any part of the host operating 
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system (OS) code or data, thereby achieving immunity to all existing rootkit detection techniques 
which perform integrity, behavior and signature checks of the host OS. Cloaker leverages the 
ARM architecture design to remain hidden from current deployed rootkit detection techniques, 
therefore it is architecture specific but OS independent. Bickford et al. [17] uses three example 
rootkits to show that smart phones are just as vulnerable to rootkits as desktop operating sys-
tems. However, the ubiquity of smart phones and the unique interfaces that they expose, such as 
voice, GPS and battery, make the social consequences of rootkits particularly devastating. 
 Code Injection: Buffer overflows also plague mobile devices. The presentation on hack-
ing Windows Mobile [18] at Xcon 2005 talked shell code development advice as well as sam-
ple code. Recent emerging threats show that such exploitations are targeting web browsers 
and other potentially exploitable software like adobe pdf view application in the mobile OSes. 
Android platform also exposed multiple vulnerabilities for code injection attacks such as CVE-
2011-3874 etc. Bojinov et al. proposed a mechanism of executable ASLR that requires no kernel 
modifications for defending remote code injection attacks for mobile devices [19]. 
 Static Analysis and Execution: There is a plethora of research on static and dynamic 
analysis of programs with more notable symbolic execution [20]. Most of the analysis programs 
focus primarily on determining if an Android application requests the correct set of permissions 
based on the Android API calls that the applications performs [8]. In addition, static analysis pro-
grams usually require access to the source code of the Android application. One of these static 
analysis programs that executes on source code [21] focuses specifically on certain types of be-
haviors, vulnerabilities, and limited analysis of the permissions. Vidas et al. [22] created a static 
analysis tool which detects when an Android application requests permissions that it does note 
need as well as needed but absent permissions from the AndroidManifest.xml file of and An-
droid application. They also developed a plugin for Eclipse which informs developers when they 
request unneeded permissions based on the application’s functionality. They developed a map-
ping based on the documentation of the Android API. This documentation for the Android API is 
incomplete, so their mapping of Android API calls is also incomplete. Blasnig et al. [23] use the 
Android emulator that comes with the Android SDK to perform dynamic analysis on Android ap-
plication and use a tool to simulate user interaction. The tool also performs some static analysis 
by disassembling the Android application and identifying certain functionality. The random-input 
generation helps to traverse various paths through the code, although using symbolic execution 
would inform the random-input generator as exactly what inputs would be needed to reach a 
particular branch of code that has interesting behavior. Moreover, Burguera et al. [24] also use 
a sandbox to perform dynamic analysis of Android applications and use a behavior-based ap-
proach to classify malware by examining the system calls of that the application makes. 

3 Motivation 
In this section, we discuss the problems and weaknesses we found while researching commodity 
mobile systems which leads to our proposed solution in next section. 

3.1 Open USB Communication 

Traditionally, a smart phone device is connected to the host as a peripheral USB device. Being 
lack of intelligence and computation power, the device is more prone to be taken over by a com-
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promised computer or abused as malware propagation medium. However, the potential attack 
surface is much wider: the USB creates a bidirectional communication channel, ideally permitting 
exploits to traverse both directions. Most USB devices are dumb storage medium or only has lim-
ited 8bit computation ability such as keyboard. However, new generation phones are equipped 
more advanced CPUs with complete operating systems which make them as powerful as a tra-
ditional desktop system. These recent hardware advancements enables such USB peripherals to 
perform attacks that are far beyond their ancestors with no chips in terms of computational and 
software capabilities. Additionally, unlike desktop computers and servers that do not move their 
physical location, the mobility nature of the smartphones empowers them to potentially com-
municate to an even larger number of uninfected devices across a wider range of administrative 
domains. For example, a smart phone left unattended for a few minutes can be completely sub-
verted and become an point of infection to other devices and computers. Lastly, because USB-
borne attacks have not been seen before, there are no defenses in place to prevent them from 
taking place or even detect them. 
 Currently, USB connections are inherently trusted by the users. When USB protocol was 
designed decade ago, the physical proximity of the device and the desktop system attributed to 
such assumed trust based on the fact that, in most cases, the same user owns both systems. 
However, Wang et. al demonstrated this trust can be easily abused by a malicious adversary [1]. 
For instance, an unsuspected user connects the smart phone device to the desktop computer to 
synchronize the two devices including her contact list, media content, calendar and to charge its 
battery. There are several communication setup steps happening in the systems but all of these 
are performed completely transparently to the user or with minimal user interaction: the simple 
press of a mouse click upon connecting the USB cable. To make matters worse, the usb host(a 
desktop computer in most of the case) is completely unaware of the type of the device that is con-
nected to the USB port. The usb peripherals can arbitrarily report itself as any usb device given 
the crafted usb id. This observation can be exploited by a sophisticated adversary who already 
gained access of the smartphone to launch attacks against the desktop system. Furthermore, 
there are no mechanisms to authenticate the validity of the device that attempts to commu-
nicate with the host in current USB protocol. The lack of authentication allows the connecting 
peripheral device to disguise and report itself as any type of USB device it want to be, abusing 
the ubiquitous nature operating system. While the open-medium problem for bluetooth and WiFi 
has been address in protocol design phrase so that the communication are protected, the USB 
communication implying a closed-medium do still has the open-medium problem given that the 
two parties of the communication can not authenticate each other. Our goal is protecting the 
devices as well as the host from such attacks by applying access control mechanisms on the USB 
protocol. We refer the USB host as the host system or host side while the USB device as gadget 
or just device side in the following sections of this paper. 

3.2 Lack of Protection for Data at rest 

The recent surge in popularity of smart handheld devices, including smartphones and tablets, 
has given rise to new challenges in protection of Personal Identifiable Information (PII). Handheld 
devices are being manufactured all over the world and millions of devices are being sold every 
month to the consumer market with increasing expectation for growth and device diversity. The 
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price for each unit ranges from free to eight hundred dollars with or without cellular services. In 
addition, new smartphone devices are constantly released to the market which results the pre-
cipitation of the old models within months of their launch. With the rich set of sensors integrated 
with these devices such as GPS, bluetooth and WiFi, the data collected and generated are ex-
traordinarily sensitive to user’s privacy. Indeed, modern mobile devices store PII for applications 
that span from daily emails to SMS, and from social sharings to location history increasing the 
concerns of the end user’s privacy. Smartphones are therefore data-centric, where the cheap 
price of the hardware and the significance of the data stored on the device challenge the tradi-
tional security provisions. Due to high churn of new devices it is compelling to create new security 
solutions that are hardware-agnostic. Therefore, there is a clear need and demand for PII data to 
be protected in the case of loss, theft, or capture of the hardware. 
 While the application sandboxing protects application-specific data from being ac-
cessed by other applications on the phone, sensitive data may be intentionally exfiltrated by 
malicious code via one of the communication channels such as USB, WiFi, Bluetooth, NFC, cellu-
lar network etc. It also can be leaked accidentally due to improper placement, resale or disposal 
of the device and its storage media (e.g. removable sdcard). Moreover, by simply capturing the 
smartphones physically, adversaries have access to confidential or even classified data if the 
owners are the government officials or military personnels. There is no government standard to 
regulate and guide the use of smart devices yet. Given the cheap price and rapid evolution of the 
hardware, the data on the devices are more critical and can cause devastating consequences if 
not well protected. To protect the secrecy of the data through its entire lifetime, we must have 
robust techniques such as encryption to store and delete data while keeping confidentiality. 
 We assume that an adversary is already in control of the device or the bare storage me-
dia in our threat model, . The memory-borne attacks and defences are not discussed in this paper 
and addressed by related researches in Section 2 and discussed later. A robust data encryption 
infrastructure provided by the operating system can help preserve the confidentiality of all data 
on the smartphone, given that the adversary cannot obtain the cryptographic key. Furthermore, 
by destroying the cryptographic key on the smartphone we can make the data practically irre-
coverable. Our encryption filesystem protects the static data on storage in complimentary to 
dynamic information flow leaking [7]. Having established a threat model and listed our assump-
tions, we detail the steps to build encryption filesystem on Android in the following sections. 

3.3 Missing Fine-Grain Application Auditing and Regulation 

Permission Model on Android platform created debated situation in both industry and academic 
community. Is such permission model really capable of regulating the applications on mobile 
operating system and protecting average user’s data?There are a couple of studies showing that 
such permission model, as scatter throughout the whole Android API, failed the aforementioned 
design goal. In particular, mobile malwares have made their way to bypass such permission 
model by using other existing applications’ capabilities to delegate the malicious behavior. In 
another work, good app with legit permissions can behave bad. Furthermore, malicious app can 
also utilizing reflection [25] to evade the permission checking system. Moreover, current permis-
sion system is a bipolar system: the user can either grant all or deny all permissions asked by 
an application. Such inflexible approach impeded the advanced user to fine-grain auditing and 
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regulating the behavior of the application. We believe that a proper static and dynamic analysis 
infrastructure will assist both smartphone users and application developers to understand the 
applications’ footprint on filesystems, network and other subsystems. The analysis results can 
lead to malware discovery and better application design. 

4 Proposed Solutions 
In previous section, we exposed the missing component in commodity mobile systems. We ad-
dress those problems by proposing our solutions to tackle them in this section. 

4.1 USBSec: Authentication for USB Communication 

We outline the design principles we follow and the detailed design of two types of USBSec, a 
passcode approach and a public key based approach. 

Design Principles Our principle is using easiest engineering, modify minimum set of USB pro-
tocol, to achieve reasonable security enhancement including identity authentication, connection 
authorization. Our design philosophies for both USBSec I and USBSec II are outlined as follows:

 – The authentication is device driver agnostic. There are a variety of different USB host con-
trollers and USB peripheral controllers in the consumer’s market. The design does not de-
pend on any specific device or device driver to accomplish our goal. The authentication 
logic happens at USB protocol level so that any host controller driver or peripheral con-
troller should have such USB authentication capability when a modified OS kernel with 
USBSec loads up.

 – No USB hardware modification. Although the modification is at USB protocol level, the 
hardware signalling and interrupts remain intact. Only operating system software level 
changes make the deployment process of USBSec time and cost efficient.

 – Our design is backward compatible. All existing USB hardware can be used as normal if 
the peripheral are not listed as USBSec required. The host selectively activates USBSec by 
configuration listed device vendorID and productsID, when it initiates the USB connection. 
This is critical to those non-programmable devices which implements USB protocol in the 
hardware, i.e. USB keyboard and mouse. Our modification to USB enumeration process 
is compatible with all standard USB devices. In another word, standard USB handshake 
proceeds if the peripheral device is not listed as authentication required.

 – The authentication is per device. In the case of a composite USB gadget device, multiple 
interfaces are available for communication with the host at the same time. The per-device 
authentication design guarantees that no interface can performance potential malicious 
action until the authentication of the device is finished.
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Fig.2. USB Handshake Diagrams. 

Implementation We have implemented a fully working prototype of USBSec I and USBSec II. 
Our evaluation platform consists of a Dell PowerEdge 1950 server equipped with two Quad-Core 
Intel Xeon E5430 processors, 16GB RAM as the host; a HTC NexusOne phone and a Motorola 
Droid phone as the devices. We evaluated USBSec on both devices to show that our design 
and implementation are not tied to specific hardware controller. The host has the Intel 631xES-
B/632xESB/3100 chipset as the USB host controller. The devices have the msm 72k OTG control-
ler integrated in QSD8250 SoC with a 1 GHz CPU and ISP1301 USB OTG controller integrated in 
the OMAP 3430 SoC with a 600 MHz CPU respectively. Both devices run a 2.6.32 based android 
kernel with respect of different SoC support. The host is running Ubuntu 10.04 with a 2.6.32 ker-
nel. Although we have user-space programs to set the necessary configuration for USBSec, all 
USBSec processing logic are implemented tightly with the existing USB stack in the Linux kernel. 
For instance, in USBSec I, the shared passcode is configured via /proc filesystem by user-space 
utility, both on the host and the device. Similarly in USBSec II, the keys are generated by openssl 
suite version 0.9.8k program and stored in file system. We wrote the user-space daemon pro-
gram to load the keys when system boots up and pass it to kernel data structures. Unlike USBSec 
I, the passcode can be changed at system runtime, the keys in USBSec II only loads at system 
bootstrapping and only have corresponding kernel memory footprint at runtime. In another word, 
reconfiguration of the keys requires the system reboot. Specifically, our user-space daemon pro-
gram will decode the PEM format of the public and private keys to DER(binary) format using 
Base64 decoding algorithms and pass it to pre-allocated data structures in kernel. The kernel 
is responsible to do the Diffie-Hellman key exchange using asymmetric crypto primitives to es-
tablish the session keys. However, in mainstream kernel, there is no RSA functionality support 
yet. We merged the existing RSA kernel implementation [26] with our additional modification to 
accept the DER binary format keys as input in the gadget kernel to achieve in kernel RSA cipher 
support. The key size is selected as 1024 bits to tradeoff moderate cryptographic security with 
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performance. 
 We performed experiments in order to quantify the performances and compare it with 
traditional USB connection scheme. We measure the connection setup time of USBSec I and 
USBSec II against standard USB. The start of connection time is define as the time that the host 
receives the interrupt from USB receptacle notifying the kernel that a device is being connect-
ed. The end of connection time is defined as the time that the host finishes learning the device 
descriptor and starts requesting the configuration information. Both of them are indicated by a 
kernel log entry. This time interval includes all our authentication and validation extensions to 
USB stack. Figure 3 shows our experiments result of USBSec extensions to USB protocol on the 
two different devices. The analysis result of the data can be highlighted as follows:

 – OurUSBSecextension only incurs very small amount overhead in connection time and do 
not affect users’ experience. Both of the devices complete the handshake within 2 seconds.

 –  Handshake takes different amount of time on difference devices, due to different USB 
controller model. The results reveal that NexusOne takes less time accomplishing the USB 
handshake than Droid, even in standard USB protocol. USB peripheral controller hardware 
and the device driver cause the difference.

 – Major CPU frequency also plays a key role in the Diffie-Hellman key exchange to establish 
asymmetric keys. The worst case scenarios reveal that the 1 GHz NexusOne performs 
faster than the 600 MHz Droid for the same amount of iterations, 256 times in our case.

Fig.3. USBSec Connection Time

Discussion Linux kernel uses a single bit to disable/enable a USB device on the USB bus [27], 
providing a basic authorization machanism. In depth, the kernel will set the device descriptor to 
”n/a (unauthorized)” and disable it by removing the device configuration information. However, 
the this scheme has fundamental 1908.6msf laws. First of all, all wired USB devices are autho-
rized by default. In addition , such authorization happens only after the device being connected 
to the host and the host already enumerated all the interfaces in the devices on the USB bus. It 
require human interactive operation to explicitly deauthorize the device afterwards. The mali-
cious program running on the device has more than enough time to compromise the host during 
this gap. Furthermore, this scheme can only authorize the device on the host. From the device’s 
point of view, there is no mechanism to authenticate the identity of the host. For example, a 
smartphone containing sensitive information can not defend itself from being connected to an 
unidentified host. Moreover, experiments show that when the user disconnect a deauthorized 
USB device, the kernel panics at usb disable endpoint function and the system become unusable. 
Further kernel code investigation reveals that even when the same device being connected to the 
host again, it will be authorized by default. 
 SELinux applies security policies labeling to files, and AppArmor applies the policies to 
pathnames. None of them take considerations for devices inside the kernel. 
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 USB 3.0 is planned to allow for device-initiated communications towards the host, 
which will make the things more complicated for implementing the authentication scheme in the 
USB stack. However, we believe with moderate engineering effort, the device-initiated commu-
nication can also be authenticated by our approach. 
 Implementation is crucial to the security strength in any crypto system. It has been con-
clusively shown that textbook RSA is insecure [28,29]. Secure RSA requires that padding scheme 
must be used before encryption and signing. USBSec II’s in kernel RSA implements padding func-
tionality to the basic RSA operations to encrypt(), decrypt(), sign() and verify() methods. 
 For passive devices that only have USB hardware implementation but no CPU(e.g. stor-
age device, keyboard), full mutual authentication can not be accomplished due to the limitation 
of computation capability at the device. Nevertheless, we can authenticate the device and logical 
driver information by the serial number after the first packets exchange, and prompt the user at 
the host to allow or deny the connection. Such allowance or rejection can be temporary or per-
manent. In most of the cases, it’s difficult to spoof the serial number information in such passive 
devices. End user’s knowledge and approval help secure the connectivity. 
 
Limitation Like any password based approach, USBSec I is facing brute force attacks. The ad-
versary can exhaust the password space and defeat USBSec I if gained control of the kernel of 
either side of the USB communication. The second limitation is USBSec I authentication use serial 
number information specifically tied to the hardware as the gadget side identity. Any hardware 
or new inventory change will need corresponding updates to the authorized devices whitelist on 
the host side.

Fig.4. Abstraction of Encryption Filesystem on Android

 Bear in mind that we are protecting unauthorized access, USBSec is defeated if the host 
or the device is already being compromised and spoofs the identity.Because at that time, the 
trusted chain is broken and authentication is useless.
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4.2 EncFS for Android

EncFS is selected as the basis for our encryption filesystem. 
 EncFS is composed of three major components : kernel FUSE library support, user space 
libfuse, and EncFS binaries. In addition, to make an encryption file-system work on Android, a 
modified bootstrapping and user login was also integrated into the Android operating system. 
 EncFS uses standard OpenSSL cryptographic libraries in userspace as cryptographic 
primitives. This gives us various advantages over using a kernel-based cryptographic library. 
Some of the features of our solution verses other in-kernel encryption approaches [30,31] can be 
summarized as follows:

 – By using EncFS our system is backward and forward compatible with existing and future 
Android versions. Since libfuse and libc are stable across different versions of Android and 
multiple hardware vendors, only minimal engineering efforts if any are needed to make 
EncFS work on other variations of Android-based smart devices.

 – EncFS leverages OpenSSL FIPS suite as the crypto service engine. The OpenSSL libraries, 
namely libcrypto and libssl, implement cryptographic algorithms that are validated with 
government FIPS 140-2 Level:1 standard [32].

 – In addition, our approach supports different underlying file-systems transparently, includ-
ing yaffs2, ext4 and vfat. 

 To build EncFS for Android, we created a package with the components described be-
low. It is required the phone has root access at installation time in order to accommodate the ker-
nel with FUSE support, system binaries and java framework patches for integrated login. Once 
installed, EncFS does not need processes or applications to run as root, in order to encrypt the 
data. The applications work transparently without knowing any change underlying changes.
  Kernel FUSE support: FUSE module provides a bridge to the actual kernel interfaces in 
general. However, the Android Linux kernel does not support FUSE file-systems in early versions. 
Such minimal kernel configuration reduces f ileystem and memory footprints on mobile devices 
and also eliminate redundant functionalities that are not required by Android. For instance, most 
Android devices, including the Nexus S which we use, do not come with the FUSE modules en-
abled in the kernel in off-the-shelf state. We obtain the kernel source code from Google’s Android 
Open Source Project (AOSP) and enabled the kernel FUSE modules necessary for libfuse to run. 
We then flash our device with this customized kernel. 
 Libfuse: As the required supportive library for all FUSE-based file-systems, libfuse is not 
officially included or supported in the Android system. Moreover, the Bionic C library in Android is 
a trimmed version of C libarary and missing glue layer code for interfacing VFS (Virtual FileSys-
tem in Linux) and FUSE. We patched the Bionic C library with missing header files (statvfs) and 
corresponding data structures that are required for libfuse version 2.8.5. 
 EncFS: By building the EncFS executables for the ARM architecture, we created the 
binaries that would enable us config and manage the EncFS filesystem. In addition to libfuse, 
EncFS also depends on the boost library which is a widely adopted C++ library[33], librlog for 
logging[34] and libcrypto/libssl for cryptographic primitives. We patched boost library version 
1.45 which is the current-to-date version as of this development and built it against Android 
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Bionic C library. The librlog is versioned at 1.4. 
 EncFS supports two block cipher algorithms: AES and Blowfish. AES runs as a 16 byte 
block cipher while Blowfish runs as a 8 byte block cipher. Both algorithms support key lengths 
of 128 to 256 bits and block sizes of 64 to 4096 bytes. Since AES is selected as standard block 
cipher by US government, our experiments focus on AES only. 
 Depending on whether we built them as static or shared libraries, we push the binaries 
onto the system binaries locations on the phone. Figure 4.2 illustrate the overall layout of En-
cFS.  
 User Interface: Normally, the Android framework loads the user interface by unpacking 
the applications and other files from /system and /data partitions. The /data partition contains all 
the user-installed applications and all the userspecific data. In our system configuration for En-
cFS, this /data partition keeps only a skeleton of the minimal folders to make system bootstrap-
ping. We store the encrypted data in a separate directory and mount it over /data mountpoint 
when the user supplies the password. 
 In addition, we modified the Android Launcher application to accept this password, 
which is the key for the encrypted version of the /data partition. If the password provided by the 
user is valid, EncFS mounts the encrypted data

Fig.5. The operational layout of the Encrypted File System (EncFS).

partition on /data mountpoint. If such mount is performed successfully, the Launcher will call a 
dedicated native program installed by us to soft reinitialize the Android Dalvik environment and 
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the user is presented with his encrypted userdata partition decrypted and loaded into the mem-
ory transparently. 
 To avoid brute-force attacks against the password, the user has a limited number of 
login attempts. If the failure attempts accumulates to a predefined threshold value (10 in our 
case), the Launcher program will erase all the encrypted data using secure deleting mechanisms. 
Although we implemented a program to perform multi-pass secure wipe of the partition, de-
stroying the key alone is adequate as we will be left with a partition full of encrypted data which 
cannot be decrypted.

Implementation and Performance Please refer to our full paper [3] for performance details and 
optimizations.

4.3 Application Analysis 

Static analysis serves as a useful method to examine the possible behavior that a program can 
exhibit. However, static analysis is constrained to certain functionality due to its inherent limita-
tions of not actually executing the code [35]. Static analysis is susceptible to false positives, false 
negatives, and obfuscation [36,37]. The precision of the analysis increases when the analysis 
program better understands the semantics of the code and is able to observe the state of the 
program. When using dynamic analysis, test inputs need to be randomly generated, come from a 
pre-generated set, or be input by an active entity. Dynamic analysis may or may not get complete 
coverage of the code, but all the instructions executed will be reachable and the program’s true 
behavior can be observed. 
 To get as close as possible to complete coverage of the code, a method must exist to 
affect the control flow of the program. As each conditional statement is encountered, either the 
values of the variables would need to be changed at runtime to obtain the desired outcome, de-
termined a priori by symbolic analysis, or be forced by controlling the jump to a particular branch 
independent of the outcome of the boolean condition being evaluated. This type of execution 
approach [38,39] stresses the program by entering as many branches as possible to make the 
program exhibit different types of behavior. 
 The impetus behind this approach is to maximize the coverage of code, as opposed to 
examining the behavior of the program exhibited by a more limited number of execution traces. 
This is important because malware can contain very specific conditions that must be met in 
order to for it to display malicious behavior [40]. In certain instances, the behavior is triggered 
by certain events such as specific times, dates, hostnames, local IP addresses, the presence of 
a file, and other factors. In addition, a program may restrain its malicious functionality when it 
determines that it is being debugged, running in an emulator, or some other type of controlled 
execution enivornment [41]. 
 We have developed a set of tools, that runs on a computer and performs concrete ex-
ecution of an Android application while abstracting certain details from the execution of the 
application. This abstraction allows the program to automate the analysis of as many paths as 
possible through the application without requiring any user input. Due to the abstraction, auto-
mation is achieved, but the precision of the analysis is reduced. The abstraction is necessary due 
to not running the application on an Android-enabled phone and the absence of the Android API 
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in disassembled applications. The program only requires an Android Package (apk) file which is 
the compressed format used to encapsulate an entire Android application into a single file. 
 Our program uses apktool [42] to disassemble an apk file to obtain Dalvik bytecode. 
Execution of the Dalvik bytecode is possible because we created a Java implementation for each 
Dalvik bytecode instruction. After using apktool, the disassembled application will be missing the 
code for the Android API since this code is resident on all Android-enabled phones. Therefore, 
calls to the Android API are not actually executed unless they are specifically handled by our pro-
gram which only occurs for a very small set of simple API calls. These were manually coded into 
our program after examining the specification and exhibited functionality for each handled API 
call. In addition, we also leverage the Java API since the program runs inside the JVM by creating 
a wrapper around certain Java API calls. 
 Our program enables the values of primitive data types and objects used as parameters 
to Android API calls to be examined and extracted. The values of the parameters depend on the 
specific execution path taken through the program. The values of the primitive data types within 
an object that are used as a parameter to an API call can also be examined. This enables a more 
through understanding of the program’s behavior, and allows hard-coded values in the applica-
tion to be operated on and extracted. The precision of the analysis is limited due to the lack of 
user interaction, user input, and Android API which will prevent certain values and objects from 
being available. 
 For example, there is an Android application with the package name of com.antivirus.
kav which uses a simple technique to obfuscate the actual domain that it connects to. The meth-
od called LinkAntivirus returns an domain that has been transformed using three calls to the 
replace method of the java.lang.String class. Figure 1 shows the smali [43] for the Dalvik byte-
code which upon conclusion will ultimately return a String containing http://routingsms.com/z.
php. Further examination of the smali code reveals that the application will connect to this do-
main using the openConnection method of the java.net.URL class. The application also appends 
the phone number, the device ID, and the subsriber ID of the phone to this domain which occurs 
in the GetRequest method of the SmsReceiver class. Using static analysis on all the files of the 
disassembled application would not be able to detect the obfuscated domain, as well as the 
phone-specific information it appends to the domain. 
 The program allows all Dalvik instructions, method calls, and API calls to be hooked 
for analysis and monitoring. Currently, the program monitors and records very specific behavior 
(e.g., commands issued, execution of binaries, use of Java reflection, loading of libraries, network 
events, files accessed, exhaustive list of methods called, control flow, and the use of dynamic 
class-loading), although this can be further expanded to anything of interest. The use of Java 
reflection is recorded because it can help to obfuscate the actual method being called unless the 
parameters are examined to see exactly which method of what class is being called. Reflection 
also obviates the use of visibility modifiers in Java [25]. 

Limitations Our approach can be computationally expensive depending on the structure and 
size of the program being analyzed. Each if conditional statement that occurs outside of a loop 
exponentially raises the number of iterations that must be executed to cover all possible paths 
within an application. Loops that are nested to a high degree significantly affect the performance 
of the program due to the large number of iterations through the code, especially when many 
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if conditional statements occur within each loop. An attacker could purposefully plant various 
computationally expensive activities throughout the program to purposefully slow the analysis 
of the application. There are approaches to make a trade-off between analysis time and analysis 
precision. There are the options to limit the number of iterations through a loop, prevent nesting 
beyond a certain number of loops, limit recursion, or use a timer that sets a maximum time that 
can elapse to indicate that a path should end. 
 The program is unable to obtain input entered by the user. We use an abstract represen-
tation for the objects that are returned from Android API calls which are not specifically handled 
by our program. These objects will have the same corresponding type but they will have no state. 
The state can be built as operations from the application set the value of the instance variables 
of an object. The program also does not have support for multithreading. There are limitations 
to our approach due to the entropy in environment variables, user input, and non-deterministic 
routines. 
 The program will enter all branches even if they are unreachable. The unreachable 
branches, conditional statements that will always be false, can result from programming logic er-
rors. Upon execution of the program, the branch will never be entered when it is executed without 
forcing the outcome of a boolean conditional associated with a if conditional statement. As the 
program encounters a if conditional statement, it will execute both branches of an if conditional 
statement without consideration if the boolean condition can never be true. This could result in a 
false positive when looking for certain behavior if it occurs in an unreachable branch. 

5 Conclusion
We presented a framework for exploring all available paths in an Android application. We veri-
fied our approach by testing a large number of Android applications with our program to exhibit 
its functionality and viability. The framework allows complete automation of the process, so that 
no user input is required. We plan to overcome the limitation of the absence of the Android API 
and phone hardware by incorporating an Android-enabled phone to handle some of the pro-
cessing. The program can also be used for program validation by determining what behavior can 
be exhibited by the application. The program also has various user set parameters that enable a 
trade-off between performance and the precision of the analysis. The program can serve as a an 
extensible basis to serve other useful purposes such as an interactive debugger, symbolic execu-
tion, dynamic analysis, and any other approach that requires analysis of an Android application 
to be performed on a computer.
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