
T E C H N I C A L PA P E R

(Un)protected
Broadcasts
in Android 9 and 10

(Un)protected Broadcasts in Android 9 and 10

Dec. 21st, 2020

Executive Summary
We discovered a systemic vulnerability affecting Android version 9, Android version 10, and Android version
11 Developer Preview that allowed third-party apps to spoof certain protected broadcast Intent messages,
allowing the sending of unauthorized messages that only the Android system and privileged pre-installed apps
should be authorized to send. This (un)protected broadcast vulnerability occurs when an app declares that the
system must protect some broadcast Intent message from being sent by other apps, yet --- due to a bug in AOSP
--- the system granted that protection only to apps installed at a specific location on the file system. In other
words, unless the app is installed at a certain path on the file system, the system would silently not honor these
protection requests, leaving the app’s broadcast messages unprotected at runtime.

Specifically, only vulnerable versions of Android, only pre-installed apps that reside in a priv-app directory
(e.g., /system/priv-app/SystemUI/SystemUI.apk) can register protected broadcasts with the system. This
leaves apps that are not present in a priv-app directory (e.g., other pre-installed apps or third party apps
installed from the market) unable to have their protected broadcast declarations honored by the system which
provides no access control and allows them to be sent by any app co-located on the device.

The lack of protection of protected broadcast Intent messages enables unauthorized parties to escalate their
privileges where they can send spoofed messages to carry out functionalities they do not have the capability or
authorization to perform. This can be viewed as a confused deputy problem since the process (deputy) receiving
the broadcast Intent message acts upon it as if it was from an authorized source. We identified numerous
Android vendors and devices that are impacted by this vulnerability where unauthorized apps can exploit
vulnerable pre-installed apps to perform highly privileged functionalities, including arbitrary command
execution with system privileges, access to the logcat log, and access to Personally Identifiable Information
(PII).

1. Background

1.1 Broadcast Intent Messages

In Android, an Intent is a message used by Android app components to share data and events or request actions from
other components. An Intent message will generally be delivered to a single recipient component, except for1

broadcast Intent messages which can be delivered to multiple recipients.

A broadcast Intent typically contains a string indicating event or action being announced or requested. This string is
referred to as the “action string” in the Android world. Apps intending to receive broadcast messages can register
handlers (called broadcast receivers) to receive and process broadcast messages. Broadcast Intents can also contain

1 https://developer.android.com/reference/android/content/Intent

Page 1 of 16

8200 Greensboro Drive, Suite 750 | McLean, VA 22102 | V: 571.282.6724 | F: 203.286.2533 | oem@kryptowire.com

https://developer.android.com/reference/android/content/Intent

the exact address of the recipient component (typically the recipient app package name and a fully-qualified
component class name) in which case the system would only unicast them to that specific recipient. Listing 1 shows
an example declaration of a broadcast receiver in the pre-installed Phone app that registered to receive the
BOOT_COMPLETED broadcast action when the system finishes booting up.

<receiver android:name="OtaStartupReceiver" ...>
<intent-filter ...>

<action android:name="android.intent.action.BOOT_COMPLETED"/>
</intent-filter>

</receiver>
Listing 1. A Broadcast Receiver declaration in the AndroidManifest.xml file in the Phone app.

If a third-party app can send broadcast Intents with an action string of android.intent.action.BOOT_COMPLETED,
then it could potentially cause data corruption or data loss by causing initialization routines to execute in the
receiving apps on the device by making it appear that the device has just finished the boot process even though it
hasn’t.

1.2. Protected Broadcasts

There is little available in regard to documentation on the use of the protected broadcast primitive. By reviewing
AOSP source code and experimenting with Android devices, we discovered what entities could declare protected
broadcasts and also what entities could send them.

Based on how this protected broadcast primitive was used by pre-installed apps and the AOSP source code, we
found that the Android Framework can prevent unauthorized apps from sending specific broadcast action strings if
these action strings are declared via a protected-broadcast element in an AndroidManifest.xml file of an app or
of the Android Framework itself. The AOSP Android Framework declares numerous protected broadcasts in its
AndroidManifest.xml file. Vendors tend to also declare protected actions using the protected broadcast primitive
and sometimes they add their own framework APK to protect additional broadcasts. A concrete example from the
AndroidManifest.xml file of the Android Framework is provided in Listing 2.2

<protected-broadcast android:name="android.net.conn.CONNECTIVITY_CHANGE"/>
<protected-broadcast android:name="android.intent.action.BOOT_COMPLETED"/>
<protected-broadcast android:name="android.intent.action.LOCALE_CHANGED"/>

Listing 2. Declarations of protected broadcasts.

The protected broadcast primitive instructs the system to perform access control by limiting which processes can
send broadcast Intents containing these action strings. For example, if a third-party app attempts to send a broadcast
Intent with an action string of android.net.conn.CONNECTIVITY_CHANGE, then the system will block the request
and throw a java.lang.SecurityException in the process context of the caller app. Listing 3 provides a source
code snippet from AOSP Android 9.0 release code where the ActivtiyManagerService evaluates whether the
sender can send a broadcast Intent with a protected action. The listing shows that the sending of a broadcast Intent3

with that action string is restricted to critical processes executing with hard-coded system User IDs (e.g., root,
system, phone, nfc, bluetooth, etc.) and persistent pre-installed apps (e.g., the Phone app). Otherwise, a

3

https://android.googlesource.com/platform/frameworks/base/+/00d9027/services/core/java/com/android/server/am/
ActivityManagerService.java#21297

2 The Android Framework APK generally has a path of /system/framework/framework-res.apk.

Page 2 of 16

8200 Greensboro Drive, Suite 750 | McLean, VA 22102 | V: 571.282.6724 | F: 203.286.2533 | oem@kryptowire.com

https://android.googlesource.com/platform/frameworks/base/+/00d9027/services/core/java/com/android/server/am/ActivityManagerService.java#21297
https://android.googlesource.com/platform/frameworks/base/+/00d9027/services/core/java/com/android/server/am/ActivityManagerService.java#21297

SecurityException will be thrown in the caller.

final boolean isCallerSystem;
switch (UserHandle.getAppId(callingUid)) {

case ROOT_UID:
case SYSTEM_UID:
case PHONE_UID:
case BLUETOOTH_UID:
case NFC_UID:
case SE_UID:

isCallerSystem = true;
break;

default:
isCallerSystem = (callerApp != null) && callerApp.persistent;
break;

}
// First line security check before anything else: stop non-system apps from
// sending protected broadcasts.
if (!isCallerSystem) {

if (isProtectedBroadcast) {
String msg = "Permission Denial: not allowed to send broadcast "

+ action + " from pid="
+ callingPid + ", uid=" + callingUid;

Slog.w(TAG, msg);
throw new SecurityException(msg);

} ...
Listing 3. AOSP Android 9.0 Logic for Restricting the Sending of Protected Broadcasts.

1.3 The (Un)protected Broadcast Vulnerability

Support for the protected-broadcast primitive appears to go all the way back to very early days of Android.
However, we noticed that there was a change in behavior starting with Android 9.0 where the system enforced
protected broadcasts only for apps residing in specific directories on the filesystem. In the general case on Android
9.0 and above, apps that reside in the /system/framework directory and priv-app directories (e.g.,
/system/priv-app) are granted this protection, whereas apps that reside elsewhere (e.g., /system/app) are not.
The protected-broadcast declaration for these apps that are not in a protected location is silently ignored by the
system at runtime, leaving the actions (unexpectedly) unprotected. This allows third-party apps to elevate their
privileges by sending spoofed broadcast intents using these unprotected actions to unsuspecting apps, crossing
security boundaries.

The vulnerability was present in AOSP code that affected Android devices running version Android 9.0 and Android
10. At the time we reported the vulnerability, it was present in Android 11 Developer Preview 3 code and in the
master branch of AOSP code (vulnerable AOSP versions have been patched as of the time of this writing). Android
vendors use AOSP code for a particular Android version and then customize it to differentiate themselves amongst
other Android with the aim of giving themselves a competitive advantage. Any Android vendors, including Google,
that use Android 9 and 10 for a specific build are vulnerable to the (un)protected broadcast vulnerability, although
the scope and impact of exploiting the vulnerability depends on the specific functionalities of impacted apps
declaring protected actions that will not actually be protected at runtime

Page 3 of 16

8200 Greensboro Drive, Suite 750 | McLean, VA 22102 | V: 571.282.6724 | F: 203.286.2533 | oem@kryptowire.com

1.4 Public Disclosure Timeline
We responsibly disclosed this vulnerability to Google through their bug reporting system and they internally tracked
the vulnerability with an ID of A-158570769. Google classified the vulnerability as a high impact escalation of
privilege vulnerability in their September 2020 Android Security Bulletin. The (un)protected broadcast4

vulnerability was granted a Common Vulnerabilities and Exposures (CVE) ID of CVE-2020-0391 with a Common
Vulnerability Scoring System (CVSS) v3 base score of 7.8 (high). The git commit that fixed the vulnerability is5

provided here. Examining the commit, the change to fix the vulnerability is to offer protection to the broadcast6

actions of all pre-installed apps regardless of their location on the filesystem.

● 05/08/2020: Initial disclosure to Android Security Team and affected vendors.
● 06/08/2020: Submitted vulnerability report to Google’s IssueTracker.
● 06/09/2020: Submission acknowledged.
● 06/18/2020: Google finished their initial assessment and ranked the severity as “High”.
● 08/21/2020: Google assigned CVE-2020-0391 for the vulnerability.
● 09/08/2020: Google changed the vulnerability status to “fixed” and awarded $5,000.

2. Vulnerability Technical Details
The vulnerability was first introduced in the initial release of Android Pie (9.0) AOSP code and existed in the
master branch of AOSP at the time we informed Google on May 08, 2020. In Android Oreo (8.0), any
pre-installed app can declare protected broadcast actions in their respective AndroidManifest.xml file and they
would be registered by the system (i.e., PackageManagerService) as a protected broadcast during system
startup. With the introduction of Android Pie, additional measures were taken to differentiate pre-installed apps
with regards to their capabilities on the system. One specific differentiation between apps is determined by the
path of a pre-installed app’s Android Package (APK) file on the device. Starting with Android Pie, only APKs
contained in the following directories can successfully register broadcast actions as protected:
/system/framework, /system/priv-app, /vendor/priv-app, /odm/priv-app, & /product/priv-app.
Except for the /system/framework directory, each directory ends with priv-app. In Android Oreo, only the
system directory separated pre-installed apps into corresponding app and priv-app directories, although both
could successfully register protected broadcasts. With Android Pie, the app/priv-app division scheme was also
applied to the following directories: /vendor, /odm, & /product. Notably, the system only scans the the
/oem/app directory for apps and not the /oem/priv-app directory.

On Android Pie, only pre-installed apps that reside within the /system/framework, /system/priv-app,
/vendor/priv-app, /odm/priv-app, & /product/priv-app directories can register protected broadcasts,
whereas pre-installed apps that reside in the following directories cannot register protected broadcasts:
/system/app, /vendor/app, /odm/app, /oem/app, /product/app, /vendor/overlay, & /product/overlay.
Effectively, starting with Android 9, a pre-installed app must have a valid APK path where it is contained in

6 https://android.googlesource.com/platform/frameworks/base/+/860fd4b6a2a4fe5d681bc07f2567fdc84f0d1580
5 https://nvd.nist.gov/vuln/detail/CVE-2020-0391
4 https://source.android.com/security/bulletin/2020-09-01

Page 4 of 16

8200 Greensboro Drive, Suite 750 | McLean, VA 22102 | V: 571.282.6724 | F: 203.286.2533 | oem@kryptowire.com

https://android.googlesource.com/platform/frameworks/base/+/860fd4b6a2a4fe5d681bc07f2567fdc84f0d1580
https://nvd.nist.gov/vuln/detail/CVE-2020-0391
https://source.android.com/security/bulletin/2020-09-01

the/system/framework directory or a white-listed priv-app directory to successfully register a broadcast
action. Android 10 is the same as Android Pie with regard to the apps in directories that it lets successfully
register protected broadcasts, except that it also allows apps in the /product_services/priv-app directory to
register protected broadcasts and additionally prevents apps in the /product_services/overlay,
/odm/overlay, & /oem/overlay directories from registering protected broadcasts.

We examined the master branch of AOSP code and the vulnerability is present as of May 8, 2020. In the
master branch, only pre-installed apps in the following directories can successfully register protected
broadcasts: /system/priv-app, /vendor/priv-app, /odm/priv-app, /product/priv-app, &
/system_ext/priv-app. Apps in the following directories will fail to register protected broadcasts:
/system/app, /vendor/app, /oem/app, /product/app, /system_ext/app, & all overlay directories (e.g.,
/*/overlay). Google recently released the Android 11 Developer Preview 3 and the behavior is the same as the
master branch of AOSP for apps registering protected broadcasts. Table 1 provides summary information for
various Android versions with regard to which pre-installed apps can and cannot register protected broadcasts.

Table 1. Android versions and how APK location affects the protected broadcast primitive in pre-installed apps.

Android
Version

Directories Where Apps Can Use the
Protected Broadcast Primitive

Directories Where Apps Cannot Use the
Protect Broadcast Primitive

AOSP
master

branch

/system/framework,
/system/priv-app,
/vendor/priv-app, /odm/priv-app,
/product/priv-app, &
/system_ext/priv-app

/system/app, /vendor/app, /oem/app,
/product/app, /system_ext/app, & all
overlay directories (i.e., /*/overlay)

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/Package
ManagerService.java - line 11599 has the logic to drop any protected broadcasts if the app was not scanned with the
SCAN_AS_PRIVILEGED flag. Line 2747 starts setting the scan flags for the pre-installed app directories.

11 (R)
Developer
Preview 3

/system/framework,
/system/priv-app,
/vendor/priv-app, /odm/priv-app,
/product/priv-app, &
/system_ext/priv-app

/system/app, /vendor/app, /oem/app,
/product/app, /system_ext/app, & all
overlay directories (i.e., /*/overlay)

https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-r-preview-3/services/core/java/com/android/server/
pm/PackageManagerService.java - line 11599 has the logic to drop any protected broadcasts if the app was not scanned
with the SCAN_AS_PRIVILEGED flag. Line 2747 starts setting the scan flags for the pre-installed app
directories.

10

/system/framework, /system/priv-app,
/vendor/priv-app, /odm/priv-app,
/product/priv-app, &
/product_services/priv-app

/system/app, /vendor/app, /odm/app,
/oem/app, /product/app,
/product_services/app,
/product/overlay, /vendor/overlay
/product_services/overlay,
/odm/overlay, & /oem/overlay

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/android10-release/services/core/java/com/android/server/
pm/PackageManagerService.java - line 11623 has the logic to drop any protected broadcasts if the app was not scanned
with the SCAN_AS_PRIVILEGED flag. Line 2601 starts setting the scan flags for the pre-installed app
directories.

Pie (9.0)

/system/framework, /system/priv-app,
/vendor/priv-app, /odm/priv-app, &
/product/priv-app

/system/app, /vendor/app, /odm/app,
/oem/app, & /product/app,
/vendor/overlay, & /product/overlay

Page 5 of 16

8200 Greensboro Drive, Suite 750 | McLean, VA 22102 | V: 571.282.6724 | F: 203.286.2533 | oem@kryptowire.com

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/PackageManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/master/services/core/java/com/android/server/pm/PackageManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-r-preview-3/services/core/java/com/android/server/pm/PackageManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-r-preview-3/services/core/java/com/android/server/pm/PackageManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/android10-release/services/core/java/com/android/server/pm/PackageManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/android10-release/services/core/java/com/android/server/pm/PackageManagerService.java

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/pie-release/services/core/java/com/android/server/pm/Pac
kageManagerService.java - line 10847 has the logic to drop any protected broadcasts if the app was not scanned with
the SCAN_AS_PRIVILEGED flag. Line 2600 starts setting the scan flags for the pre-installed app directories.

Oreo (8.0)

/system/framework, /system/app,
/system/priv-app, /vendor/app,
/oem/app, & /vendor/overlay

N/A

https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-8.1.0_r71/core/java/android/content/pm/PackagePa
rser.java - line 2441 has adds protected broadcasts if the app was scanned with the PARSE_IS_SYSTEM flag.
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-8.1.0_r71/services/core/java/com/android/server/p
m/PackageManagerService.java - line 2604 starts setting the parse flags for the pre-installed app directories.

Table 1 only covers pre-installed apps. Third-party apps cannot declare protected broadcasts and have them be
successfully recognized and protected by the system. As mentioned previously, the APK location of an app is
considered when determining if the system should register a protected broadcast that an app declares in its
manifest file. In addition, any pre-installed app that has been updated outside of a regular firmware update will
have its corresponding update APK file reside in the /data/app directory. Since this app is an updated
pre-installed app, it can still successfully register protected broadcasts if its initial APK location permits the
successful registration of protected broadcasts. Table 1 provides links to the classes in AOSP that control which
app directories containing pre-installed apps can and cannot successfully protect broadcasts. On most of the
Android versions in Table 1, the PackageManagerService class parses known pre-installed app directories and
contains the logic for whether their protected broadcasts should indeed be protected. In Android Oreo, the
PackageParser class also contains logic for determining which protected broadcasts should be registered with
the system.

3. Sample of Impacted Android Devices
Each protected-broadcast declared in an app wherein the broadcast action will not be protected can manifest as
a vulnerability that negatively impacts the end-user. Android has hundreds of vendors that have the potential to
introduce (un)protected broadcast vulnerabilities into their builds. While it is infeasible for us to collect and
analyze all Android Pie and Android 10 builds for every vendor/model combination, we provide a sample of 89
different firmware showing the breadth of the issues in Table 2. For all firmware for each vendor, we provide
the total number of pre-installed apps that declare at least one protected broadcast which will not actually be
protected by the system and also the total number broadcast actions that are used with the protected broadcast
primitive, but will not offer any protection. We determined the aggregate number for these two metrics for each
vendor and also provided the unique number of instances for apps and broadcast actions. We consider an app to
be unique based on the combination of its package name, version code, and version name.

Table 2. A sample of Android Pie and Android 10 firmware images and their exposure to the (un)protected
broadcast vulnerability, providing per-vendor counts of affected apps and broadcast actions.

Vendor # Firmware
Apps Declaring
(Un)protected
Broadcasts

(Un)protected
Broadcasts
Actions Declared

Unique Apps
Declaring
(Un)protected
Broadcasts

Unique
(Un)protected
Broadcast Actions
Declared

Page 6 of 16

8200 Greensboro Drive, Suite 750 | McLean, VA 22102 | V: 571.282.6724 | F: 203.286.2533 | oem@kryptowire.com

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/pie-release/services/core/java/com/android/server/pm/PackageManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/heads/pie-release/services/core/java/com/android/server/pm/PackageManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-8.1.0_r71/core/java/android/content/pm/PackageParser.java
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-8.1.0_r71/core/java/android/content/pm/PackageParser.java
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-8.1.0_r71/services/core/java/com/android/server/pm/PackageManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-8.1.0_r71/services/core/java/com/android/server/pm/PackageManagerService.java

Google 53 295 606 8 17

Samsung 14 73 76 12 6

Xiaomi 14 143 519 30 59

Nvidia 3 27 99 9 33

Oppo 2 8 32 8 32

Asus 1 7 23 7 23

ZTE 1 3 15 3 15

Fairphone 1 6 31 6 31

Total 89 562 1,401 83 216

In this sample of 89 firmware, every single firmware contained at least one app that uses the
protected-broadcast primitive and due to the file system location of the declaring APK file, the broadcast action
will not be protected by the system and be open to spoofing by any app on the device. This false sense of
security by trusting the provenance of broadcast intent messages with action strings that have been declared to
be protected and are not due to the declaring app’s APK path, results in a vulnerability that may or may not be
exploitable. In the sample, there were 1,401 broadcast actions (216 unique) that were declared to be protected,
although they can be spoofed by non-system users (e.g., third-party apps). There were a total of 562 apps (83
unique) that declared at least one protected broadcast action that will not be protected by the system.

4. Specific Examples
To demonstrate the impact of the (un)protected broadcast vulnerability, we provide the following example
vulnerabilities that manifest due to third-party apps being able to spoof broadcast intent messages that
pre-installed apps have declared as protected, but no protection is granted by the system due to the APK path.
There are likely additional privilege escalation vulnerabilities residing in pre-installed apps where developers
make a false assumption that certain declared broadcast actions cannot be sent by non-system users on various
Android Pie builds and higher.

4.1. Various Android Vendors - com.qualcomm.qti.perfdump
An app with a package name of com.qualcomm.qti.perfdump app comes pre-installed on multiple Android
devices and Android vendors. When this app is pre-installed on an Android device that uses Android version 9
or higher and its APK location is not in a white-listed priv-app directory, it exposes arbitrary command
execution as the system user to any process on the device, including third-party apps. In addition, the app can
be made to write various sensitive data (e.g., system logs, bugreport, screenshot, etc.) to external storage. We
responsibly disclosed this vulnerability to Qualcomm, and they assigned it a CVE-ID of CVE-2020-11164. The
description of the vulnerability provided by Qualcomm shows the depth of the affected “Third-party app may

Page 7 of 16

8200 Greensboro Drive, Suite 750 | McLean, VA 22102 | V: 571.282.6724 | F: 203.286.2533 | oem@kryptowire.com

also call the broadcasts in Perfdump and cause privilege escalation issue due to improper access control' in
Snapdragon Auto, Snapdragon Connectivity, Snapdragon Consumer IOT, Snapdragon Industrial IOT,
Snapdragon Mobile, Snapdragon Wearables in Agatti, APQ8096AU, APQ8098, Bitra, Kamorta, MSM8909W,
MSM8917, MSM8940, Nicobar, QCA6390, QCM2150, QCS605, Rennell, SA6155P, SA8155P, Saipan,
SDA660, SDM429W, SDM450, SDM630, SDM636, SDM660, SDM670, SDM710, SM6150, SM7150,
SM8150, SM8250, SXR1130, SXR2130.” This shows the true depth of devices that contain the7

aforementioned chipsets and is also posted by Qualcomm in their October 2020 security bulletin rating it as a
high privilege escalation vulnerability. Although Qualcomm provided the chipsets affected, we have provided8

a sampling of affected Android devices in Table 3 that contain a pre-installed com.qualcomm.qti.perfdump

app version that is vulnerable to command execution as the system user and leaking of sensitive data to
external storage.

Table 3. Devices that contain a vulnerable version of the pre-installed com.qualcomm.qti.perfdump app.

Vendor Model Product
Name

Android
Version

App Version
Code

App Version
Name

Sony Xperia 1 802SO 9 8 3.0.1

Nokia 7 Plus B2N_sprout 9 7 2.1.1

Fairphone Fairphone 3 FP3 9 8 3.0.1

Meizu Note 9 meizunote9 9 7 2.1.1

Meizu 16Xs meizu16Xs 9 8 3.0.1

Xiaomi Poco F1 beryllium 9 7 2.1.1

Xiaomi Mi 9 cepheus 9 7 2.1.1

Xiaomi Mi 8 dipper 9 7 2.1.1

Xiaomi Mi 8 Pro equuleus 9 7 2.1.1

Xiaomi Mi Max 3 nitrogen 9 7 2.1.1

Xiaomi Mi Mix 3 perseus 9 7 2.1.1

Xiaomi Mi 8 Lite platina 9 7 2.1.1

Xiaomi Mi A2 Lite daisy 9 7 2.1.1

Xiaomi Mi A2 jasmine 9 7 2.1.1

Xiaomi Redmi Note 7 lavender 9 7 2.1.1

Xiaomi Redmi 7 onc_eea 9 7 2.1.1

Xiaomi Redmi Note willow_eea 9 8 3.0.1

8 https://www.qualcomm.com/company/product-security/bulletins/october-2020-security-bulletin#_cve-2020-11164
7 https://nvd.nist.gov/vuln/detail/CVE-2020-11164

Page 8 of 16

8200 Greensboro Drive, Suite 750 | McLean, VA 22102 | V: 571.282.6724 | F: 203.286.2533 | oem@kryptowire.com

https://www.qualcomm.com/company/product-security/bulletins/october-2020-security-bulletin#_cve-2020-11164
https://nvd.nist.gov/vuln/detail/CVE-2020-11164

8T

We verified the command execution vulnerability on a Xiaomi Redmi Note 8T Android device which contains
com.qualcomm.qti.perfdump (versionCode=8, versionName=3.0.1) as a pre-installed app with an APK path
of /system/app/Perfdump/Perfdump.apk. The APK path prevents the com.qualcomm.qti.perfdump app
from successfully protecting the broadcast actions it attempts to protect. The com.qualcomm.qti.perfdump app
is signed with the platform key and executes with the system UID (e.g., 1000) on the Xiaomi Redmi Note 8T
device (xiaomi/willow_eea/willow:9/PKQ1.190616.001/V10.3.0.6.PCXEUOR:user/release-keys),
providing significant privilege when executing commands.

This app declares seven different protected broadcasts in its AndroidManifest.xml file. Notably, the app
declares an action string named android.perfdump.action.EXT_EXEC_SHELL as a protected broadcast in its
manifest file. Also in its manifest, it statically registers the com.qualcomm.qti.perfdump.StaticReceiver

broadcast receiver to receive broadcast intents with the android.perfdump.action.EXT_EXEC_SHELL action
string. When the StaticReceiver broadcast receiver receives a broadcast intent with an action string of
android.perfdump.action.EXT_EXEC_SHELL, it forwards the intent to a service app component named
com.qualcomm.qti.perfdump.ExtRequestService. The ExtRequestService extracts a string extra from the
received intent named shellCommand. The service ensures that command is not empty, and starts a thread to
execute the sh -c <value of shellCommand> command using the java.lang.Runtime.exec(String[])

Application Programming Interface (API) method call. Effectively, the service application component named
ExtRequestService executes an externally controlled command in a non-interactive shell, giving the attacker
greater capability than executing a command without the shell environment. In addition, the command is
completely controlled by the attacker since the whole command originates from the attacker, except for the sh

-c portion that conveniently provides the non-interactive shell. Listing 4 provides the source code to execute
arbitrary commands as the system user via the com.qualcomm.qti.perfdump app on impacted devices.

Intent intent = new Intent("android.perfdump.action.EXT_EXEC_SHELL");
intent.setClassName("com.qualcomm.qti.perfdump",
"com.qualcomm.qti.perfdump.StaticReceiver");
intent.putExtra("callerPackageName", "com.test");
intent.putExtra("shellCommand", <command_to_execute>);
sendBroadcast(intent);

Listing 4. Source code snippet to execute commands as system UID via the com.qualcomm.qti.perfdump app.

If there is any output on the standard error stream from the executed command, the app writes the last line from
the standard error stream to the system log using a log tag of PERFDUMP.EXT and also sends it in a
non-permission protected broadcast intent with an action string of android.perfdump.action.EXT_FEEDBACK
to the package name that was provided in the callerPackageName string extra in the broadcast intent that it
receives.

The com.qualcomm.qti.perfdump app also tries to register the
android.perfdump.action.EXT_START_TRACE and android.perfdump.action.EXT_DUMP_TRACE actions as
protected broadcasts, although they will not be protected due to the file system location of the APK file. The
com.qualcomm.qti.perfdump.StaticReceiver broadcast receiver statically registers to receive broadcast
intent messages that have action strings named android.perfdump.action.EXT_START_TRACE and
android.perfdump.action.EXT_DUMP_TRACE. These two broadcast actions can be sent by third-party apps
which causes the com.qualcomm.qti.perfdump app to write various system logs and debugging information to

Page 9 of 16

8200 Greensboro Drive, Suite 750 | McLean, VA 22102 | V: 571.282.6724 | F: 203.286.2533 | oem@kryptowire.com

external storage on the device. Notably, the app dumps the following to external storage: logcat log, dumpsys
output, screenshot, and a bugreport. These system logs and debugging information are not directly available to
third-party apps since they tend to contain sensitive information. The sensitive data that the app dumps to
external storage is controlled by various boolean extras that are sent in the broadcast intent with an action string
of android.perfdump.action.EXT_START_TRACE. The dumpsys output and especially the bugreport contain
extensive information about the state of the system. An external app selects a directory on the file system where
com.qualcomm.qti.perfdump app will dump the sensitive data using string extras in the intent. We caused the
com.qualcomm.qti.perfdump app to dump the sensitive data to a directory on external storage. On the Xiaomi
Redmi Note 8T device, SELinux blocked the com.qualcomm.qti.perfdump app from writing the sensitive data
directly to a third-party app’s private directory. This can be overcome by having the system UID read the file on
external storage in chunks and then sending the constituent to the attack app via a dynamically registered
broadcast receiver. Whether or not the com.qualcomm.qti.perfdump app can write to a third-party app’s9

private directory depends on the specific SELinux policies of the device. A third-party app can use the
(un)protected broadcasts of the com.qualcomm.qti.perfdump app to obtain sensitive information about the
user and also the state of the system.

4.2 Various Android Vendors - com.qualcomm.qti.qmmi
We verified the two vulnerabilities on an a number of Android devices which contain com.qualcomm.qti.qmmi

(versionCode=400, versionName=4.0) as a pre-installed app with an APK path of
/system/app/Qmmi/Qmmi.apk. The APK path prevents the com.qualcomm.qti.qmmi app from successfully
protecting the broadcast actions it attempts to protect. This app is signed with the platform key and executes
with the system UID (e.g., 1000) on the Oppo Reno 2 Android device
(OPPO/PCAM00/OP46B1:10/QKQ1.190918.001/1584955444:user/release-keys), affording the app
significant capabilities. These vulnerabilities generally do not apply if the com.qualcomm.qti.qmmi app is in a
priv-app directory (e.g., /system/priv-app/Qmmi/Qmmi.apk), although we have only seen the
com.qualcomm.qti.qmmi app have a path of /system/app/Qmmi/Qmmi.apk.

The com.qualcomm.qti.qmmi app declares six different protected broadcasts in its AndroidManifest.xml file.
Notably, the app declares an action string named qualcomm.qti.qmmi.DIAG_START_TESTCAST as a protected
broadcast in its manifest file. The com.qualcomm.qti.qmmi app dynamically registers the an anonymous class
named com.qualcomm.qti.qmmi.framework.MainActivity$1 to receive broadcast intents with the
qualcomm.qti.qmmi.DIAG_START_TESTCAST action string. When the MainActivity$1 broadcast receiver
receives a broadcast intent with an action string of qualcomm.qti.qmmi.DIAG_START_TESTCAST, it will check
for a string extra in the received intent named case_name and its corresponding value is the name of the test
case that should be run. The com.qualcomm.qti.qmmi app has a list of valid test cases that it populates from
embedded XML files. This disclosure focuses on the following four named test cases: SYSTEM_INFO, WIFI,
BLUETOOTH, and NFC. Each test case generally starts either a corresponding activity app component and service
app component.

This vulnerability allows a third-party app with no permissions to obtain the following unique device

9 Section 4.1.1 of this DEF CON 26 paper contain details about transferring data via implicit broadcast messages:
https://media.defcon.org/DEF%20CON%2026/DEF%20CON%2026%20presentations/Ryan%20Johnson%20and%
20Angelos%20Stavrou%20-%20Updated/DEFCON-26-Johnson-and-Stavrou-Vulnerable-Out-of-the-Box-An-Eval-
of-Android-Carrier-Devices-WP-Updated.pdf

Page 10 of 16

8200 Greensboro Drive, Suite 750 | McLean, VA 22102 | V: 571.282.6724 | F: 203.286.2533 | oem@kryptowire.com

https://media.defcon.org/DEF%20CON%2026/DEF%20CON%2026%20presentations/Ryan%20Johnson%20and%20Angelos%20Stavrou%20-%20Updated/DEFCON-26-Johnson-and-Stavrou-Vulnerable-Out-of-the-Box-An-Eval-of-Android-Carrier-Devices-WP-Updated.pdf
https://media.defcon.org/DEF%20CON%2026/DEF%20CON%2026%20presentations/Ryan%20Johnson%20and%20Angelos%20Stavrou%20-%20Updated/DEFCON-26-Johnson-and-Stavrou-Vulnerable-Out-of-the-Box-An-Eval-of-Android-Carrier-Devices-WP-Updated.pdf
https://media.defcon.org/DEF%20CON%2026/DEF%20CON%2026%20presentations/Ryan%20Johnson%20and%20Angelos%20Stavrou%20-%20Updated/DEFCON-26-Johnson-and-Stavrou-Vulnerable-Out-of-the-Box-An-Eval-of-Android-Carrier-Devices-WP-Updated.pdf

identifiers: IMEI1, IMEI2 (if present), Wi-Fi MAC address, Bluetooth address, and serial number. To achieve
this, the third party-app first starts the com.qualcomm.qti.qmmi.framework.MainActivity activity
component using an intent. The com.qualcomm.qti.qmmi.framework.MainActivity component will
dynamically register an anonymous broadcast receiver, named
com.qualcomm.qti.qmmi.framework.MainActivity$1, to receive intents with an action string of
qualcomm.qti.qmmi.DIAG_START_TESTCAST. Although the com.qualcomm.qti.qmmi app declares
qualcomm.qti.qmmi.DIAG_START_TESTCAST as a protected broadcast in its AndroidManifest.xml file, the
system will not grant it protection since the app does not reside within a priv-app directory (e.g.,
/system/priv-app). Therefore, any app, including third-party apps, can send a broadcast intent with any action
string the com.qualcomm.qti.qmmi app has declared as protected in its manifest file. Then the third-party app
sends a broadcast intent with an action string of qualcomm.qti.qmmi.DIAG_START_TESTCAST and a string extra
named case_name with a value of SYSTEM_INFO. When the this broadcast intent is received, the
com.qualcomm.qti.qmmi app will start the
com.qualcomm.qti.qmmi.testcase.SystemInfo.SystemInfoService app component to gather system
information and also starts the com.qualcomm.qti.qmmi.testcase.SystemInfo.SystemInfoActivity app
component to display the system information it receives to the user. The SystemInfoService app component
obtains the various unique device identifiers (IMEI1, IMEI2 (if present), Wi-Fi MAC address, Bluetooth
address, and serial number) and after these device identifiers have been gathered, they will be put into an intent
with a corresponding intent string intent name of msg. It will then send the intent with an action name of
qualcomm.qti.qmmi.UPDATE_MESSAGE as an ordered broadcast message. This broadcast intent is an implicit
intent since there is not a specific app package name or destination component that is declared as the recipient
of the intent. In addition, the com.qualcomm.qti.qmmi app does not require that the receiving process possess a
permission. Therefore, any app that registers for the qualcomm.qti.qmmi.UPDATE_MESSAGE action can receive
the broadcast intent that the com.qualcomm.qti.qmmi app sends that contains the unique devices identifiers.
Listing 5 provides the source code to programmatically obtain the unique device identifiers from the
com.qualcomm.qti.qmmi app. The source code will simply write the unique device identifiers to the logcat log
with a log tag of msg. The actual log messages obtained from a device using this code are highlighted in the
listing.

IntentFilter intentFilter = new IntentFilter();
intentFilter.addAction("qualcomm.qti.qmmi.UPDATE_MESSAGE");
registerReceiver(new BroadcastReceiver() {

@Override
public void onReceive(Context context, Intent intent) {

if (intent == null || !intent.hasExtra("msg"))
return;

if ("qualcomm.qti.qmmi.UPDATE_MESSAGE".equals(intent.getAction())) {
String msg = intent.getStringExtra("msg");
String[] msg_strs = msg.split("\\n");
for (String msg_str : msg_strs) {

Log.d("msg", msg_str);
// when the broadcast intent is received, it will contain the following data
// D msg : Android Version:9
// D msg : Modem:Q_V1_P14,Q_V1_P14
// D msg : Serial:9655cfac
// D msg : IMEI1:863112046217716
// D msg : IMEI2:863112046217708
// D msg : BT Address:18:D0:C5:E0:63:A8
// D msg : WIFI MAC:18:d0:c5:e0:63:a9
// D msg : Diag support:YES

}
}

}

Page 11 of 16

8200 Greensboro Drive, Suite 750 | McLean, VA 22102 | V: 571.282.6724 | F: 203.286.2533 | oem@kryptowire.com

}, intentFilter);

Intent intent = new Intent();
intent.setClassName("com.qualcomm.qti.qmmi",
"com.qualcomm.qti.qmmi.framework.MainActivity");
intent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK
Intent.FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS);
startActivity(intent);

try {
Thread.sleep(3500);

} catch (InterruptedException e) {
e.printStackTrace();

}

Intent broadcast_intent = new Intent();
broadcast_intent.setAction("qualcomm.qti.qmmi.DIAG_START_TESTCAST");
broadcast_intent.putExtra("case_name", "SYSTEM_INFO");
sendBroadcast(broadcast_intent);

try {
Thread.sleep(7000);

} catch (InterruptedException e) {
e.printStackTrace();

}

Intent home_screen_intent = new Intent("android.intent.action.MAIN");
home_screen_intent.addCategory("android.intent.category.HOME");
home_screen_intent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
startActivity(home_screen_intent);

Listing 5. Java source code to obtain the unique device identifiers.

In addition to sending the unique device identifiers using an implicit intent, these unique device identifier
values are written to the logcat log by the com.qualcomm.qti.qmmi app. Listing 6 provides the logcat messages
written by the com.qualcomm.qti.qmmi app with the relevant portions of the message highlighted.

I Qmmi : [ResultParser.java] [saveResultToFile] writeResultFile, TestCase , data size:8
I Qmmi : [ResultParser.java] [saveResultToFile] write ressult file, data
,key:imei2,param,value:863112046217708
I Qmmi : [ResultParser.java] [saveResultToFile] write ressult file, data
,key:bt_address,param,value:18:D0:C5:E0:63:A8
I Qmmi : [ResultParser.java] [saveResultToFile] write ressult file, data
,key:imei1,param,value:863112046217716
I Qmmi : [ResultParser.java] [saveResultToFile] write ressult file, data
,key:serial,param,value:9655cfac
I Qmmi : [ResultParser.java] [saveResultToFile] write ressult file, data
,key:modem,param,value:Q_V1_P14,Q_V1_P14
I Qmmi : [ResultParser.java] [saveResultToFile] write ressult file, data
,key:wifi_mac,param,value:18:d0:c5:e0:63:a9

Listing 6. Unique device identifiers leaked to the logcat log.

Only pre-installed apps and apps signed with the framework key can obtain the system-wide logcat log.
Therefore, third-party apps cannot obtain the system wide logcat log directly. We have seen numerous instances
where the logcat log is leaked by a pre-installed app, so that it becomes accessible to a third-party app. So
writing to the logcat log does not guarantee that third-party apps will not be able to indirectly obtain it.

Page 12 of 16

8200 Greensboro Drive, Suite 750 | McLean, VA 22102 | V: 571.282.6724 | F: 203.286.2533 | oem@kryptowire.com

4.3 Pixel Devices - com.android.service.ims.presence
All four major Pixel devices contain a pre-installed app that facilitates Rich Communication Services (RCS)
with a package name of com.android.service.ims.presence. As part of this app’s functionality, it maintains
a database that “mirrors” the device’s official contacts provider. On the Pixel devices, this APK has a file
system location of /system/app/PresencePolling/PresencePolling.apk. This app uses the
protected-broadcast primitive in its AndroidManifest.xml file to attempt to try to prevent non-system
processes from broadcasting intents four different action strings. Due to the file system location of the app, the
action strings that the app declares to protect will not be registered by the system as protected broadcasts,
allowing any process on the device to send broadcast messages with the action strings that the app attempts to
register as protected.

Of the four action strings the app attempts to register as protected broadcasts, one is named
android.provider.rcs.eab.EAB_DATABASE_RESET. This action is sent by the app when it upgrades or
downgrades an internal database named rcseab.db. The com.android.service.ims.presence.EABService

service app component creates a broadcast receiver implementation and dynamically registers it for the
android.provider.rcs.eab.EAB_DATABASE_RESET action, among a few others. When the app’s broadcast
receiver receives an intent with an action string of android.provider.rcs.eab.EAB_DATABASE_RESET, it will
initiate a synchronization of the EABPresence table in the rcseab.db file with the device’s official contact
provider. This causes the com.android.service.ims.presence app to query for all of the contact info from
the official contact provider and write it to the EABPresence table in the rcseab.db file, independent of
whether the info for a contact already exist in the EABPresence table or not. A third-party app with no
permissions can send a broadcast intent with an action string of
android.provider.rcs.eab.EAB_DATABASE_RESET which will be received by the
com.android.service.ims.presence app. Listing 7 provides a snippet of the dumpsys command output
showing that the com.android.service.ims.presence app registration for the
android.provider.rcs.eab.EAB_DATABASE_RESET action string using a broadcast receiver. The
com.android.service.ims.presence app uses a process name of com.android.ims.rcsservice due a
chosen configuration in its manifest file (i.e. android:process). This broadcast receiver does not require that
the sender of broadcast intents containing these actions possess any specific permission.

* ReceiverList{6faeef 3157 com.android.ims.rcsservice/1001/u0 remote:ad40fce}
app=3157:com.android.ims.rcsservice/1001 pid=3157 uid=1001 user=0
Filter #0: BroadcastFilter{2b47dfc}

Action: "android.provider.Contacts.DATABASE_CREATED"
Action: "android.intent.action.TIME_SET"
Action: "android.intent.action.TIMEZONE_CHANGED"
Action: "android.provider.rcs.eab.EAB_DATABASE_RESET"

Listing 7. Partial dumpsys output showing a broadcast receiver in the com.android.service.ims.presence

app having registered to receive the android.provider.rcs.eab.EAB_DATABASE_RESET action string.

The com.android.service.ims.presence app registers for the four actions strings shown in the listing. If the
android.provider.rcs.eab.EAB_DATABASE_RESET action does not immediately show up in the dumpsys

output, then insert a Subscriber Identity Module (SIM) and accept the terms of using RCS when presented with
a dialog in the standard Messages app. Since the app tries to register the
android.provider.rcs.eab.EAB_DATABASE_RESET action as a protected action and since the app has an APK
file system location (i.e., /system/app/PresencePolling/PresencePolling.apk) that is not in an authorized

Page 13 of 16

8200 Greensboro Drive, Suite 750 | McLean, VA 22102 | V: 571.282.6724 | F: 203.286.2533 | oem@kryptowire.com

priv-app directory, the protected broadcast action will not be protected, and non-system processes, including
third-party apps will be able to send this broadcast intents with this action. Therefore, a third-party app residing
on the device, can send a broadcast intent with an action string of
android.provider.rcs.eab.EAB_DATABASE_RESET which the com.android.service.ims.presence app
attempted to register as a protected broadcast. Listing 8 shows partial output of the dumpsys command
displaying a third-party app with no permissions spoofing a broadcast intent with an action of
android.provider.rcs.eab.EAB_DATABASE_RESET that the com.android.service.ims.presence app
attempted to register as protected broadcast but failed to do so.

Historical Broadcast background #0:
BroadcastRecord{21e6a6 u0 android.provider.rcs.eab.EAB_DATABASE_RESET} to user 0
Intent { act=android.provider.rcs.eab.EAB_DATABASE_RESET flg=0x10 }
caller=com.kryptowire.thirdpartyapp 25608:com.kryptowire.thirdpartyapp/u0a148

pid=25608 uid=10148
enqueueClockTime=2020-04-29 14:01:56 dispatchClockTime=2020-04-29 14:01:56
dispatchTime=-15ms (0 since enq) finishTime=-15ms (0 since disp)
Deliver #0: BroadcastFilter{2b47dfc u0 ReceiverList{6faeef 3157

com.android.ims.rcsservice/1001/u0 remote:ad40fce}}

Listing 8. Partial dumpsys output showing that the com.android.service.ims.presence app received a
broadcast intent with the android.provider.rcs.eab.EAB_DATABASE_RESET action string from a third-party

app named com.kryptowire.thirdpartyapp.

When the spoofed broadcast intent with an action string of
android.provider.rcs.eab.EAB_DATABASE_RESET is received by the com.android.service.ims.presence

app, it will obtain all of the user’s contacts from the default contact provider and copy them to the EABPresence

table in the rcseab.db file. There is no check to see if contact entries exist prior to copying them, so that the
app adds all of the user’s contacts to its EABPresence table each time is receives a broadcast intent with the
android.provider.rcs.eab.EAB_DATABASE_RESET action string. Therefore, the EABPresence table, and the
underlying rcseab.db file, increase in size by the number of user contacts in the default contact provider each
time it receives an intent with the action string that it intended to protect. A third-party app can repeatedly send
the android.provider.rcs.eab.EAB_DATABASE_RESET action string in a broadcast intent and continually
increase the size of the EABPresence table in the rcseab.db file. When a third-party app persists in sending this
broadcast action intent that should be protected, it can increase the size of the rcseab.db file and potentially
cause a Denial of Service (DoS) attack on an pre-installed app that executes as the radio user with a UID of
1001. The usage of the protected broadcast primitive is not limited to the
com.android.service.ims.presence app on Pixel devices. Table 5 displays the apps on the most recent
Android Pixel 4 build (google/flame/flame:10/QQ2A.200405.005/6254899:user/release-keys) running
Android 10 and the apps that declared a protected broadcast which will not be protected based on the file path
of the declaring app. All of the apps in Table 4 have a version code of 29 and a version name of 10.

Table 4. Apps on the most recent Pixel 4 build that declare a protected broadcast that will not be protected.

Package Name Protected
Broadcasts
Declared

App Path on Device

com.qualcomm.qti.uceShimService 4 /product/app/uceShimService/uceShimService.apk

com.google.SSRestartDetector 2 /product/app/SSRestartDetector/SSRestartDetector.a
pk

Page 14 of 16

8200 Greensboro Drive, Suite 750 | McLean, VA 22102 | V: 571.282.6724 | F: 203.286.2533 | oem@kryptowire.com

com.android.service.ims.presence 4 /system/app/PresencePolling/PresencePolling.apk

4.4 Fairphone 3 - com.qualcomm.qti.logkit.lite
An app with a package name of com.qualcomm.qti.logkit.lite (versionCode=3, versionName=4.00.000)
comes pre-installed on the Fairphone 3 with a path of /vendor/app/qti-logkit/qti-logkit.apk. The device
has a build fingerprint of Fairphone/FP3/FP3:9/8901.2.A.0096.20191001/10011803:user/release-keys.
The com.qualcomm.qti.logkit.lite app declares five different protected broadcasts in its manifest file, but
none of them will not be protected based on the APK path. One of the (un)protected broadcasts which has an
action string of com.qualcomm.qti.logkit.lite.intent.action.cAutomation.Automation can be used by
third-party apps to cause the com.qualcomm.qti.logkit.lite app to leak the logcat log to external storage.
The app exploiting this vulnerability must first start the com.qualcomm.qti.logkit.lite.cActivity activity
app component and then they send a broadcast intent with an action string of
com.qualcomm.qti.logkit.lite.intent.action.cAutomation.Automation and a string extra named
Logging with a value of Start. After any arbitrary period of time has passed, the app can send another
broadcast intent with the same action string and a string extra named Logging with a value of Stop to stop the
logging. Finally, the app can send a broadcast intent the same action string and a string extra named Package

with a value of -sdcard1 which will cause the system-wide logcat log to be leaked to external storage. The
system-wide logcat log is not available to third-party apps directly, but a third-party app can use the broadcast
actions that the com.qualcomm.qti.logkit.lite app tries to register as protected to indirectly obtain the
system-wide logcat log after it is leaked to external storage. Listing 9 displays a source code snippet that will
cause the com.qualcomm.qti.logkit.lite app to leak a logcat file on external storage, specifically to the
/sdcard/Android/data/com.qualcomm.qti.logkit.lite/files/logdata directory.

startActivity(new Intent().setClassName("com.qualcomm.qti.logkit.lite",
"com.qualcomm.qti.logkit.lite.cActivity"));
Intent start_intent = new
Intent("com.qualcomm.qti.logkit.lite.intent.action.cAutomation.Automation");
start_intent.putExtra("Logging", "Start");
sendBroadcast(start_intent);
// sleep ten seconds
Thread.sleep(10000);
Intent stop_intent = new
Intent("com.qualcomm.qti.logkit.lite.intent.action.cAutomation.Automation");
stop_intent.putExtra("Logging", "Stop");
sendBroadcast(stop_intent);
Intent dump_intent = new
Intent("com.qualcomm.qti.logkit.lite.intent.action.cAutomation.Automation");
dump_intent.putExtra("Package", "-sdcard0");
sendBroadcast(dump_intent);

Listing 9. Source code snippet to dump logs to external storage.

5. Conclusion
This writeup outlined a vulnerability that we discovered in Android versions 9, 10, and 11 Developer Preview 3

Page 15 of 16

8200 Greensboro Drive, Suite 750 | McLean, VA 22102 | V: 571.282.6724 | F: 203.286.2533 | oem@kryptowire.com

that allowed unauthorized apps to spoof sensitive messages and send them to unsuspecting apps as if they were
sent by a legitimate source. On unpatched devices, the Android system silently ignores protection requests of
broadcast actions declared by a pre-installed app if the app is not pre-installed at certain paths on the filesystem.
We found numerous vulnerable instances in the wild in which this vulnerability could enable third party apps to
escalate privileges and perform sensitive functionalities by delegating requests to vulnerable pre-installed apps
(a confused-deputy attack). We disclosed the vulnerability to Google and patches have rolled for impacted
versions. Providing explicit feedback to the developers or a runtime warning for pre-installed apps may be
helpful in catching this and similar scenarios in the future before damage is done to end users.

Page 16 of 16

8200 Greensboro Drive, Suite 750 | McLean, VA 22102 | V: 571.282.6724 | F: 203.286.2533 | oem@kryptowire.com

